
Michael Kropfberger, Dipl.-Ing.

MULTIMEDIA STREAMING OVER BEST EFFORT

NETWORKS USING MULTI-LEVEL ADAPTATION AND

BUFFER SMOOTHING ALGORITHMS

DISSERTATION

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

Universität Klagenfurt
Fakultät für Wirtschaftswissenschaften und Informatik

1. Begutachter: Univ.-Prof. Dr. Hermann Hellwagner
Institut: Institut für Informationstechnologie, Universität Klagenfurt

2. Begutachter: o.Univ.-Prof. Dr. László Böszörményi
Institut: Institut für Informationstechnologie, Universität Klagenfurt

October 2004

Ehrenwörtliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende Schrift verfasst
und die mit ihr unmittelbar verbundenen Arbeiten selbst durchgeführt
habe. Die in der Schrift verwendete Literatur sowie das Ausmaß der mir
im gesamten Arbeitsvorgang gewährten Unterstützung sind ausnahmslos
angegeben. Die Schrift ist noch keiner anderen Prüfungsbehörde vorgelegt
worden.

Word of Honour

I honestly declare that the thesis at hand and all its directly accompanying
work have been done by myself. Permission has been obtained for the use
of any copyrighted material appearing in this thesis and all such use is
clearly acknowledged. The thesis has not been presented to any other
examination board.

Unterschrift:

Klagenfurt, 24. Oktober 2004

ii

Contents

List of Tables vii

List of Figures viii

Danksagung x

Kurzfassung xi

Abstract xii

1 Introduction 1
1.1 Multimedia Streaming over TCP/IP 2
1.2 Adapting to Changing Bandwidth . 3
1.3 Variable Bitrate Streams . 3
1.4 Outline of the Thesis . 4

2 Smoothed Video Streamout 6
2.1 Overview . 6
2.2 Techniques for Smoothed Streamout 9

2.2.1 Delayed Playback . 9
2.2.2 Increased Streamout Bandwidth 10
2.2.3 Reduced Bitrate by Adaptation 11
2.2.4 The Client Buffer Tunnel . 12

2.3 Related Work . 13
2.4 The Proposed Static Streamout Analysis Algorithm 15

2.4.1 Detailed Description of the Algorithm 17
2.4.2 Implementation Results . 18

2.4.2.1 Optimum Buffer with Minimum Streamout Bandwidth 19
2.4.2.2 Minimum Buffer with Minimum Streamout Bandwidth 19
2.4.2.3 Absolute Minimum Buffer with High Streamout

Bandwidth . 20

iii

2.4.2.4 Maximum Buffer with High Streamout Bandwidth . 21
2.5 Conclusion and Future Work . 26

3 Methods of Video Adaptation 27
3.1 Overview . 27
3.2 Scalable Codecs . 30

3.2.1 Temporal Scalability . 30
3.2.2 SNR Scalability . 31

3.2.2.1 Wavelet Transformation 32
3.2.2.2 Fine Granularity Scalability (FGS) in MPEG-4 . . . 33

3.2.3 Spatial Scalability . 34
3.2.4 Object Based Scalability . 38
3.2.5 Region of Interest Scalability 38
3.2.6 Complexity Scalability . 39

3.3 Combined Usage . 40
3.3.1 The Universal Scalable Video Codec 40
3.3.2 Chaining of Multiple Codecs 41
3.3.3 User-Centric Adaptation . 42

3.3.3.1 Subjective Tests . 42
3.3.3.2 Monetary Issues on Quality 43

4 Detailed Analysis of Temporal Scalability 44
4.1 Overview . 44
4.2 Frame Patterns . 45
4.3 Distances between Reference Frames 47
4.4 Quantization Steps for Different Frame Types 50

4.4.1 Absolute Versus Relative Gain of Scalability 51
4.4.2 Optimum Encoder Settings 52

4.5 Prioritization of B-Frames . 57
4.5.1 “Bad” Prioritizations . 58
4.5.2 Timely Uniform Distribution 59
4.5.3 Varying Motion Energy within a Pattern 64
4.5.4 Scene Cuts and Key Frames 64
4.5.5 PSNR-Based Quality Detection of Drop Patterns 65

4.6 Evaluation of the Different B-Frame Prioritization Schemes 68
4.7 Conclusion and Future Work . 72

5 Stream Switching 74
5.1 Overview . 74

5.1.1 Limitations of In-Stream Adaptation 74
5.1.2 Thin Streams versus Stream Switching 76

iv

5.2 Possibilities of Distribution of Functionality 77
5.2.1 Client vs. Server Initiated Switch 77
5.2.2 Client Transparent vs. Non-Transparent Switching 77

5.3 Switching in the Temporal, Spatial, and SNR Domains 79
5.3.1 The Test Environment . 80
5.3.2 Coarse-Grained Stream Switching in the Spatial and SNR Domain 82
5.3.3 Adding Fine-Grained Temporal Adaptation 84
5.3.4 The Optimal Switching Point 88

5.4 Conclusion and Future Work . 90

6 Multimedia Negotiation and Streaming 92
6.1 Overview . 92
6.2 Multimedia Data Transport with RTP/RTCP 92

6.2.1 Mixers and Translators . 93
6.2.2 Data Packet Format . 94
6.2.3 Control Packet Format . 95
6.2.4 RTP Profile for Audio and Video (RTP/AVP) 99

6.2.4.1 Some Audio Encodings 100
6.2.4.2 Some Video Encodings 101

6.3 Media Control and Announcement with RTSP/SDP 101
6.3.1 Session Description Protocol (SDP) 102

6.3.1.1 General Session Description Block Layout 102
6.3.1.2 Important Fields . 102

6.3.2 Real-Time Streaming Protocol (RTSP) 106
6.3.2.1 Important Methods 106

7 Extensions to RTSP, RTP and RTCP 110
7.1 Overview . 110
7.2 Extensions for RTSP Stream Switching 110
7.3 Extensions for RTCP-based Feedback 115

7.3.1 Feedback Types . 116
7.3.2 Packet Formats . 117

7.3.2.1 Common Packet Format 117
7.3.2.2 Transport Layer Feedback Messages 118

7.3.3 SDP Extensions . 119
7.4 Extensions for RTP Retransmission 119

7.4.1 Options for the Multiplexing Scheme 120
7.4.1.1 Session Multiplexing 120
7.4.1.2 SSRC Multiplexing 121

7.4.2 Payload Format . 121

v

7.4.3 SDP Extensions . 122
7.4.3.1 SDP for Session Multiplexing 122
7.4.3.2 SDP for SSRC Multiplexing 123

7.5 Evaluation of RTP/RTCP Extensions 124
7.5.1 Test Setup . 124
7.5.2 Basic RTCP Feedback . 125
7.5.3 RTCP-based Feedback Extension 126
7.5.4 RTP Retransmission . 127

7.6 Conclusion and Future Work . 128

8 ViTooKi - The Video ToolKit 132
8.1 Generic Streaming Environment . 133

8.1.1 Server-Side RTP Class . 134
8.1.2 Client-Side RTP Class . 137

8.2 Bandwidth Smoothing and Adaptation 139
8.2.1 Bandwidth Consumption . 139
8.2.2 Adaptation by B-frame Dropping 141

8.2.2.1 Priority-based Dropping Using a Hint File 141
8.2.2.2 The Smoothing and Adaptation Engine 142

8.2.3 Retransmission of Lost Packets 143
8.2.4 Adaptation vs. Buffer Management 144

8.2.4.1 Client-Side Buffer . 144
8.2.4.2 Streaming Strategies 145

8.3 Switching . 147

9 Conclusion and Future Work 150

A Implementation Details 152
A.1 Recursive Generation of Timely Uniform Distributed Priority Values . 152
A.2 Extensions for RTCP-based Feedback 154

A.2.1 Receiver Side . 154
A.2.2 Sender Side . 155

B ViTooKi Convenience Functionality 159
B.1 Statistics Dumps . 159
B.2 Priority Files . 161
B.3 PSNR Calculation . 162
B.4 YUVDump Adaptor . 163

Bibliography 164

vi

List of Tables

2.1 Variable bitrate streamed with simple and smoothed approach 8
2.2 Smoothed streaming with increased streamout bandwidth 11
2.3 Smoothed streaming of an adapted stream 12

4.1 Temporal scalability gains with increasing number of B-frames at 30 fps 47

4.2 Optimum streams with P
4B→ P and I-/P-quantizations 16, 12, and 8 . 53

4.3 Temporal adaptation in case of prioritized frames 59
4.4 Building tree for timely uniform distributed prioritization for 7 frames 60
4.5 Building tree for timely uniform distributed prioritization for 15 frames 60
4.6 Efficient priority assignment and adaptation of frames 61
4.7 Prioritized frame pattern exposed to increasing level of adaptation . . 62
4.8 PSNR estimation in case of randomly dropped B-frames 66
4.9 MPEG-4 reference streams used for B-frame prioritization comparison 69

4.10 Comparing sequence ice with P
1B→ P and P

4B→ P at same bandwidth 73

5.1 Used switch set of streams with varying resolution and quantization . 80

6.1 General setup of a session description data block 104
6.2 Example of an SDP session description data block 105

7.1 RTCP feedback message types correlated with their payload types . . 118

A.1 Example of RtpCallback routine with RTCP feedback support 157
A.2 Example of RTCP feedback message parsing 158

vii

List of Figures

2.1 Frame size variations . 7
2.2 Buffer underrun because of low streamout rate (see Table 2.1) 9
2.3 Prefetching time avoids buffer underrun 10
2.4 Higher streamout bandwidth allows decoding without prefetching . . 11
2.5 Buffer tunnel with different streamout bandwidths 13
2.6 Optimum buffer and minimum streamout bandwidth 22
2.7 Minimum buffer and minimum streamout bandwidth 23
2.8 Absolute minimum buffer and high streamout bandwidth 24
2.9 Maximum buffer and high streamout bandwidth 25

3.1 Frame types and their dependencies in MPEG-4 31
3.2 MPEG-4 scalable profile provides a base and an enhancement layer . 32
3.3 The enhancement layer can be truncated arbitrarily 32
3.4 FGS frames with their base and enhancement layer 33
3.5 Nearest neighbour interpolation for upscaling and downscaling 36
3.6 Interpolation method comparison for image downscaling 37
3.7 Reference frames are sent before referencing frames 39
3.8 Adaptation by a chain of adaptor plugins 41

4.1 The more B-frames between P, the farther their reference frames . . . 46
4.2 P-frames grow proportionally to their distance to each other 48
4.3 Innermost B-frames need more bytes to code deltas 49
4.4 Dynamic B-frame quantization with static I-/P-quantization 16 . . . 54
4.5 Dynamic B-frame quantization with static I-/P-quantization 12 . . . 55
4.6 Dynamic B-frame quantization with static I-/P-quantization 8 56
4.7 Prioritization within one V sec with varying frame sizes 63
4.8 Modification lattice including quality measures 67
4.9 QCTVA top-down searches linked patterns with highest quality . . . 68
4.10 Quality reduction on dropped frames for keepRate 85% and 70% . . . 70
4.11 Varying frame rates for keepRate 85% and 70% 71

5.1 Combining adaptation and stream switching 75

viii

5.2 Stream switching without any further in-stream adaptation 83
5.3 Stream switching with temporal adaptation 86
5.4 Visual frame rate per playout second after temporal adaptation . . . 87
5.5 Streams are switched at the next available I-frame 88

6.1 RTP header on top of UDP/IPv4 . 94
6.2 RTCP sender report (packet type = 200) 98
6.3 RTCP receiver report (packet type = 201) 99
6.4 SDES: source description RTCP packet (packet type = 202) 100

7.1 RTCP feedback modes of operation with growing group size 116
7.2 Common packet format for feedback messages 117
7.3 NACK packet format for lost RTP sequences 118
7.4 ACK packet format for received RTP sequences 119
7.5 RTP retransmission payload format 121
7.6 PSNR values for the unadapted video with 400 kbps 125
7.7 Bandwidth measurements with standard RTCP feedback 126
7.8 Frame rate adjustments with standard RTCP feedback 127
7.9 Quality loss with standard RTCP feedback 128
7.10 Bandwidth measurements with extended RTCP feedback 129
7.11 Frame rate adjustments with extended RTCP feedback 129
7.12 Quality loss with extended RTCP feedback 130
7.13 Frame rate adjustments with retransmissions 130
7.14 Quality loss after decoded retransmissions 131

8.1 Class overview for client-server architecture in ViTooKi 134
8.2 ViTooKi adaptors within their class hierarchies 135
8.3 Concurrent threads at the server-side of the Rtp class 136
8.4 Concurrent threads at the client side of the Rtp class 137
8.5 TCP sawtooth vs. our TCP friendly approach 141
8.6 Priority-based B-frame adaptation . 143
8.7 Overfull buffers force netBW reduction 146
8.8 Streams are switched at the next available I-frame 148

ix

Danksagung

Mein Dank gebührt all meinen unschuldigen “Diskussionspartnern”, die sich, trotz
denkbar ungeeigneter fachlicher Voraussetzungen, über die letzten Jahre regelmäßig
mit diversen Problematiken der Multimediaübertragung im Internet auseinander set-
zen mussten. Ich hoffe aber, dass ich all meine Freunde, meine Familie und den
Rest der Welt von der Sinnhaftigkeit meiner (und vieler anderer Forscher) Arbeit
überzeugen konnte und bedanke mich für ihr geduldiges Lauschen und Kopfnicken.

Insbesondere danken möchte ich meiner geliebten Frau Inga, die mir in so manch
schwerer Stunde wieder Kraft gab, diese Arbeit weiter zu führen und letztendlich zu
beenden. Ich wünsche Ihr einen ebenso erfolgreichen Abschluss der ihrigen und hoffe,
ihr auf gleiche Weise beistehen zu können.

Weiters danke ich meinem Betreuer Prof. Hellwagner und meinem Institutsvor-
stand Prof. Böszörményi, welche mich beide sicher auf dem Weg der wahren
Forschung durchs “Welt-Rettungs-Dickicht” führten. Dies als Basis und mit deren
Unterstützung startet nun ein hoffentlich ebenso erfolgreiches Projekt, welches sich
mit einer Produktüberführung der im Folgenden beschriebenen Dissertationsthemen
befasst.

Weitere treue Wegbegleiter waren alle Kollegen am Institut für Informations-
technologie, insbesondere mein ViTooKi-Kollege Peter Schojer, sowie mein äußerst
interessierter Bürokollege Mario Taschwer, der ungewollt in einige hitzige Diskussio-
nen verwickelt wurde, aber immer hilfreich zur Seite stand.

Großer Dank und ein edler Schwenk muss natürlich der geheimen Organisation der
Hekkas zukommen, welche mich durch unzählige kaffeegetränkte Unterausschüsse zu
informatisch hochwertigen Themen immer wieder an das Gute im Computer glauben
ließ . . .

x

Kurzfassung

Neben den bereits bekannten Netzwerkanwendungen wie das Versenden von E-Mails und das Surfen
im Internet, ist eine neue Technologie im Vormarsch: das Strömen von Multimediadaten. Doch
bevor dieser neue Anwendungsfall sich wirklich im heutigen Internet durchsetzen kann, müssen
noch einige Probleme beseitigt werden. Die folgenden Maßnahmen sind absolut notwendig für eine
funktionierende Streaming-Umgebung:

• Das gleichmäßige Aussenden von Strömen mit variablen Bitraten, welches unnötige Spitzen-
belastungen verhindert.

• Kontrolle des Clientseitigen Pufferfüllstands, um ein ruckelfreies Abspielen der Daten zu
gewährleisten.

• Das Erkennen von Paketverlusten und deren Fehlerbehebung bzw. die Veranlassung einer
erneuten Übertragung.

• Schnelle und exakte Messung der real vorhandenen Bandbreite.

• Auf kurzfristige und kleinbereichige Bandbreitenvariationen muss schnell und effektiv mit
Adaptionsstrategien (wie zB das Verwerfen von Frames) reagiert werden, welche die benötigte
Bandbreite verringern, aber trotzdem die visuelle Qualiät nicht übermäßig beeinträchtigen.

• Bei langfristigen und starken Bandbreitenvariationen muss der aktuell aktive Strom durch
eine Bitraten-mäßig angepasste Variante ersetzt werden.

Viele Forscher haben die obig genannten Themen bereits erkannt und behandelt. Leider wurden
diese immer nur als Einzelprobleme angesehen, und es wurden niemals alle miteinander in einem
großen Server-Client Streaming-System eingesetzt und auf deren Zusammenspiel analysiert. Diese
Dissertationsarbeit hat sich genau dieses zum Ziel gesetzt und wird die am meisten versprechenden
Kombinationen präsentieren und analysieren.

Da die einfache Kommunikation zwischen Multimedia-Servern und Klienten eine der wichtig-
sten Anforderungen für alle Internetapplikationen darstellt, wurde besonderer Wert auf Stan-
dardkonformität gelegt. Als Ergebnis daraus entstand ein frei verfügbares Open-Source-Projekt,
welches das Strömen und Adaptieren von Multimediadaten in Internet-ähnlichen Netzwerken un-
terstützt. Diese einfach zu erweiternde Software nennt sich ViTooKi – The Video ToolKit und ist
unter http://vitooki.sourceforge.net zu finden. Die äusserst flexible Programmierbibliothek
repräsentiert ein stabiles Streaming-Testsystem und ermöglicht ein effizientes Strömen von Multi-
mediadaten im Internet. Es vereint alle obig genannten Themen wie gleichmäßiges Aussenden von
Daten, sichere Pufferverwaltung, erneutes Senden bei Paketverlusten und schnelle Bandbreitenan-
passung durch eine Kombination von fein- und grobgranularen Adaptionsmechanismen. All das im-
mer unter Bedacht der absoluten Standardkonformität, um mit anderen Multimedia-Applikationen
auch in Zukunft zusammenarbeiten zu können.

xi

Abstract

In addition to the well-known networking applications like email and browsing the Web, there is a
new emerging “killer application”: multimedia streaming. Before this new use case will be widely
available within today’s Internet, there are various obstacles which have to be solved first. The
measures, which are vital for a well-functioning streaming environment are as follows:

• smoothed streamout of variable bit rate streams, to avoid peaks over the full connection time,

• monitoring the fill state and restrictions of the client buffer, to guarantee jitter-free playback,

• detecting packet loss and reacting with appropriate error correction or retransmission of the
packets,

• fast and accurate measuring of the really available bandwidth,

• ways to overcome short-term and small-ranged bandwidth fluctuations by using fast and
effective methods of adaptation like frame dropping, which reduces the needed bandwidth
without decreasing the perceived quality too much,

• reacting to long-term massive bandwidth changes by completely switching from the active
stream to a version encoded for lower bandwidth and quality.

Many researchers have investigated different parts of the above mentioned measures, offering
interesting solutions. Unfortunately, those works were always seen as seperate problems, they were
never put together for analyzing their coexistence when combined in a full-fledged server-client
streaming environment. This thesis wants to combine all of the above mentioned measures by using
and evaluating the most promising and performance-wise feasible solutions.

Since inter-connectivity between various multimedia servers and clients is one of the most impor-
tant requirements for Internet applications, it was absolutely important to be compliant to available
standards and to offer well-known and widely accepted ways of communication.

As a result, a freely available open-source client-server environment for multimedia streaming
and adaptation for best effort networks is available for world-wide usage and for further extension. It
is called ViTooKi – The Video ToolKit and is downloadable on http://vitooki.sourceforge.net.

The very flexible library incorporates a well-tested and analyzed streaming testbed which meets
all requirements of high quality multimedia streaming with respect to best effort networks, combining
the above mentioned topics like smoothed streamout and buffer management, packet retransmission
and fast bandwidth adjustment using a combination of fine- and coarse-grained adaptation methods,
always keeping in mind standard conformance for coexistence with other multimedia applications.

xii

CHAPTER

1 Introduction

Well-known and widely used network applications like email and web services are

more and more accompanied by a newly emerging “killer application”: multimedia

streaming. This multimedia streaming will be available on eg. the home computer,

where all family members want to watch DVD-quality videos, or on different types

of cell phones or handheld devices, where people want to see movie clips or sports

scenes.

The video and audio data will not always be available on a local harddisk, but have

to be streamed from a connected server somewhere in the network. To offer a wide

range of content from many world-wide providers to a huge audience, this network

has to be the well-known Internet, which is IP based and imposes various limitations

onto multimedia streaming applications. This best effort network, penetrated by

thousands of users with varying load patterns, has no means of providing a fixed

quality of service, neither in terms of bandwidth nor of latency [1].

It is a fact that today’s Internet is put together by many Internet service providers,

using lots of cabling and different hardware equipment. Many companies have already

taken high investments in this streaming-wise unsatisfying infrastructure, so it will

take a long time until better hardware is available world-wide. The same problem is

valid for already emerging wireless networks – so called “hot spots” – which even more

suffer from ever-changing usage patterns and other external influences like buildings

or by-passing cars [2].

CHAPTER 1. INTRODUCTION 2

1.1 Multimedia Streaming over TCP/IP

Standard networking applications like email or ftp, which only need reliable non-

realtime data transmission, are using TCP on top of lossy IP networks. TCP coun-

tervails the problems of the underlying network layers by most notably implementing

congestion control and guaranteed retransmission. As an example, for a file transfer

it is acceptable, that the amount of time used for this transfer is determined by the

available bandwidth. So it will take longer to transfer the same amount of data over

a low bandwidth link than over a faster connection.

For multimedia streaming, a stream with a certain bandwidth requirement should

ideally never suffer from lacking bandwidth. If it is subjected to a sudden bandwidth

reduction and no measures are taken to prevent such a case, the client application

stops playing and has to refill the buffer again. TCP, when used for multimedia

streaming and subjected to packet loss, sacrifices bandwidth for retransmission, even

though some retransmitted packets would be late anyway. Further, TCP congestion

control reacts with heavy and discontinuous reduction of the available streamout rate,

which also wastes available bandwidth. Multimedia streaming environments cannot

compensate those heavy and frequent fluctuations over a longer period of time without

running out of buffer sooner or later.

Although attempts were made to use TCP/IP for multimedia streaming [3] [4],

the widely accepted approach is to use the real-time transport protocol (RTP [5]) on

top of UDP/IP, which circumvents most of TCP’s unwanted behavior. Using recently

introduced extensions on RTP retransmission of lost packets [6] and more immediate

RTP feedback about network behavior [7], an intelligent server-client software like the

one presented in this work, will overcome some of the Internet’s deficiencies without

suffering from TCP’s rigid behavior.

Further note that using UDP also offers the possibility of sending data in a mul-

ticast fashion, which means that multiple clients are connecting to the same stream,

which hereby severely decreases the network load. Still, for this work, we want to

focus on personalized video on demand streaming, so each client can start and pause

its stream at will, which is only functional with the unicast scenario.

CHAPTER 1. INTRODUCTION 3

1.2 Adapting to Changing Bandwidth

As stated above, applications in best effort networks are always exposed to changing

bandwidth. So if bandwidth goes down, it is not possible to transmit enough data, so

the client buffer will run out of data sooner or later. Since video and audio playback

should never stop because of drained buffers, the stream has to be somehow adjusted

to the available bandwidth. This can be done by reducing the quality and hereby the

needed bandwidth, as long as the bandwidth is too low for the standard data rate.

To do so, video streams encoded with modern codecs offer various means of adap-

tation. The most widely available and fastest way in terms of computational require-

ments is to use temporal adaptation, which means to drop some frames. A frame

dropping algorithm leveraging modern codecs has to distinguish between different

frame types since dropping can only be performed on specially droppable frames. As

a favorable side effect, codecs using droppable frames can produce smaller streams

by leveraging motion detection and compensation over still images and additionally

offer some amount of extra adaptability.

To offer good visual results at the client, it is advisable to drop frames uniformly

distributed over time instead of dropping a number of consecutive frames. If the

necessary means are available, even results can be improved further with a priori

information about the importance of certain frames. By this, only the visually less

important ones are dropped.

If available network bandwidth stays low or decreases even more, fine-grained in-

stream adaptation methods like frame dropping will reach their limit and the available

client buffer is not able to recover but will dry out inevitably. Only coarse-grained

adaptation will help to overcome those severe network problems. This means switch-

ing to a lower quality or lower resolution video stream encoded at a lower bitrate.

1.3 Variable Bitrate Streams

Modern video codecs use many different optimizations to code a stream at low bitrates

while still maintaining a reasonable quality. This includes the already mentioned

motion detection and compensation, but also variable bitrate coding. If eg. a video

scene is very complex, more bits are needed to code it, but if there is eg. a very

CHAPTER 1. INTRODUCTION 4

slow panning scene of a panorama landscape, fewer bits per second are needed to

code this information. So it is obvious that the bitrate of the coded video changes

over time, which is not reflected by a simple average bitrate. For video streaming, it

is not advisable to use the average bitrate as the streamout rate, since this will not

compensate all the peaks and will lead to buffer underrun. To overcome this problem,

a special smoothing buffer and streaming algorithm will be introduced.

1.4 Outline of the Thesis

This thesis discusses the topics of multimedia streaming using RTP over UDP/IP,

packet retransmission, adaptation, stream switching and smoothing buffer algorithms.

The term multimedia in the following work is used interchangeably for a video or

audio stream. Although only video streams are thoroughly analyzed in this thesis,

modern audio codecs underly the same rules of network packetization, retransmission,

switching and buffering and also offer similar types of adaptation, so video and audio

streams are treated the same throughout this work. Still, a detailed analysis of audio

in a streaming and adaptation context was out of scope of this work.

In Chapter 2, a new algorithm is proposed which analyzes variable bitrate streams

in order to avoid buffer underrun. This is achieved by a smoothing buffer approach

to calculate hints and the necessary bandwidth for the streaming server.

Whenever the real bandwidth does not provide the needed streamout bandwidth,

additional measures like in-stream adaptation have to be taken. Chapter 3 introduces

various adaptation techniques, whereas Chapter 4 focusses on temporal adaptation

and the optimal preparation process for such temporally adaptable streams. We

further come up with frame prioritization schemes for increasing user satisfaction

when performing the necessary adaptation.

Chapter 5 discusses the steps that have to be taken, when the bandwidth changes

in a coarse-grained manner. Here stream switching to another pre-encoded version

is suggested and analyzed for different sources of control (server driven vs. client

driven). Client notification about forthcoming switching is described. Special focus is

put not only on varying bandwidth but also on the available buffer fill level. Further, a

combination of fine-grained in-stream temporal adaptation and coarse-grained stream

CHAPTER 1. INTRODUCTION 5

switching is proposed, and the results show increased visual quality and client buffer

stability with this novel two-dimensional dynamic adaptation.

Chapter 6 presents the standard conformant protocols which are needed to be

interoperable with various already available multimedia streaming tools. Those pro-

tocols define how to send consecutive frames over the unreliable network (RTP) and

to receive feedback on overall packet loss (RTCP). Moreover, ways to communicate

and setup multimedia streams (RTSP) with an included description of these streams

(SDP) are explained.

To better support the two-dimensional dynamic adaptation mentioned above,

Chapter 7 discusses extensions to these basic standards, whereas the first extension

introduces more immediate RTCP feedback mechanisms for faster information on the

exact frame loss. In combination to this extension, a second one for RTP packet re-

transmission is analyzed, since retransmission significantly increases the visual quality

of the displayed video. This work evaluates the improvements and hereby shows the

importance of these extensions for a viable multimedia streaming environment.

All the proposed ideas and methods were implemented in ViTooKi – The Video

ToolKit, which is available on http://vitooki.sourceforge.net. Chapter 8 de-

scribes the internal data structures and basic ideas of the ViTooKi video and audio

streaming environment, the RTP networking engine, the buffer smoothing and adap-

tation engine and the stream switching engine. Finally, Chapter 9 comes up with a

conclusion, open questions and the future work which can be based on this thesis.

Appendix A offers some ViTooKi implementation details on the proposed ex-

tensions and Appendix B lists some useful and convenient tools to access internal

statistics information and shows how to add further frame prioritization algorithms.

CHAPTER

2 Smoothed Video Streamout

2.1 Overview

The following chapter discusses modern codecs, which have different bandwidth needs

to code different scenes. Further evaluation is done for the aspects of sending such a

multimedia stream over the network. Please note, that throughout this work, we will

use the terms multimedia stream and (as a subset, so called single media) video stream

exchangably. Modern audio codecs are subjected to the same coding strategies, and

hereby can be treated in the same way when buffering and streaming is needed.

MPEG-4 [8] encoders can be configured to generate streams with a (quasi) fixed

average bitrate. Coding at a certain constant bitrate means to force lower quality

in highly detailed scenes and to raise quality in not so complex scenes. Since this

would result in varying visual quality for the user, most MPEG-4 encoders offer no

constant bitrate (CBR) but only a variable bitrate (VBR) to code different scenes

with the needed bitrate. This finally can be averaged to a specified bitrate. Because

for efficiency and quality reasons they even code consecutive frames in variable sizes,

according to their motion and their frame type. MPEG-4 uses three frame types,

self-standing I-frames for resynchronization, P-frames which reference previous I- or

P-frames and finally the smallest ones, the B-frames, which reference in two directions

to other I- or P-frames. Please find a more detailed analysis and description of frame

types in the next chapter, now we only want to outline the fact of varying frame sizes,

which is shown in Figure 2.1.

Different frame sizes also lead to different-sized bitrates for full seconds with 25

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 7

0 200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000

15000
Frame Sizes

Frame Numbers

F
ra

m
e

S
iz

e
in

 B
yt

es

I−Frame
P−Frame
B−Frame

Figure 2.1: Frame size variations

frames per second. So, for example, if a stream has an average bitrate of 512 kbps,

every 25 frames of this stream should need about 512 kbps, but this will only work

on the overall average.

The first major block of Table 2.1 labelled as MPEG-4 video lists a video with

four seconds, where each second requires a different bitrate.

If we want to stream out such a video via a network, there are two possibilites.

The obvious, but worst, would be to stream out one second of video (so the bitsize

V secBSk of a given video second V seck) in one second of sending time (called one

streamout second (Sseck). This would introduce extreme peaks to the network traffic

(see major block two of Table 2.1 labelled simple streamout).

To use and smooth the bandwidth better, we try to stream out exactly the average

bitsize of all V secBSn, which leads to a bitrate of 512 kbps. According to the top

row shown in Figure 2.2, we can send out all bits of video second one (V secBS1) in

the first stream-out second (Ssec1), since the size of V secBS1 exactly matches our

streamout bandwidth of 512 kbps. Within Ssec2, we could only stream 2
3

of V secBS2,

where in Ssec3, we could add the remainder of V secBS2 and the full V secBS3. In

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 8

MPEG-4 video simple streamout smoothed streamout

second bitsize
[kbits]

bitsize
[kbits]

streamed
video
seconds

bitsize
[kbits]

streamed video sec-
onds

1 512 512 V secBS1 512 V secBS1

2 768 768 V secBS2 512 66% of V secBS2

3 256 256 V secBS3 512 33% of V secBS2

+100% of V secBS3

4 512 512 V secBS4 512 V secBS4

avgBW = 512kbps

Table 2.1: Variable bitrate streamed with simple and smoothed approach

Ssec4 we could exactly stream V secBS4. Find the tabulated overview in the major

block three of Table 2.1 labelled smoothed streamout.

Figure 2.2 shows the streamout seconds (Ssec) on the timeline, and, offset by

one second, the playout seconds (Psec). We assume that after one second of sending

data, the client starts to decode and play out the data which it has received within

the previous second.

According to our example, at Psec1 there would be the full block of V secBS1

available for decoding, but we would already run into decoding problems in playout

second two (Psec2), since V sec2 is not fully available yet in the buffer1. At Psec3, we

would be able to decode the meanwhile fully arrived data of V secBS2, but because

of already missed presentation timestamps and synchroization issues, we have to

totally abandon V sec2 and directly continue with V sec3, which is fully available with

V secBS3 kbits in the buffer.

1Buffer underrun could be handled at a finer granularity, eg. at the level of frames, but this
would introduce extra complexity because of frame dependencies. Still, the same problem of wrong
average sending rates would occur. So for simplicity, we assume, that it is necessary for the decoder
to receive a full V secBSk to successfully decode it. To let this assumption hold, we further assume
that every V sec starts with an I-Frame and is coded as a closed GOP, so a group-of-pictures (GOP)
is completely independent from other preceding or following V secs.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 9

Figure 2.2: Buffer underrun because of low streamout rate (see Table 2.1)

2.2 Techniques for Smoothed Streamout

In the following we will discuss three methods of avoiding buffer underflow. First,

this can be achieved by delaying the playback until more data is stored in the buffer,

second, the streamout bandwidth can simply be increased, and third, adaptation is

used to reduce the stream’s overall bandwidth.

2.2.1 Delayed Playback

To make sure that the decoder always has enough data available, we have to introduce

some prefetching time, which effectively causes a startup latency for the client, before

a video is displayed. The receiver side waits until some amount of V secs is buffered,

before the decoder starts to work on the bits of V sec1 (see Figure 2.3).

Since a long video might contain large, long and early peaks in the needed bitsize of

various V secs, we might need to prefetch a large number of V secs to overcome those

problems. This increases the needed client buffer size, which might be problematic

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 10

Figure 2.3: Prefetching time avoids buffer underrun

on resource-constrained mobile devices. Furthermore, it introduces a large start-up

delay before the first frame of V sec1 goes into the decoder to be played out. As seen

in many publicly available video players like RealPlayer or Microsoft’s MediaPlayer,

a prefetching delay of about 8 Ssecs is used, assuming that users will not tolerate

significantly longer prefetching periods. RealPlayer also uses a higher streamout rate

just for this prefetching period, but this results in a more bursty traffic load which

could easily lead to congestion. MediaPlayer keeps the streamout rate constant over

all time (find a comparison of both players in [9]).

2.2.2 Increased Streamout Bandwidth

Although having this tolerable maximum of 8 streamout secs (Ssecs), we still cannot

know the needed bitsizes of the first video seconds, so prefetching 8 Ssecs can still

result in a very low number of full V secs, when they have large bandwidth require-

ments.

To stay within this prefetch boundary and always receive complete V secs, we have

to increase the streamout bandwidth. In Table 2.2 we go up from 512 to 640 kbps.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 11

With this higher streamout bandwidth, no prefetching is needed and there are always

enough V secs in the client buffer for decoding (see Figure 2.4).

MPEG-4 video smoothed streamout

second bitsize
[kbits]

bitsize [kbits] streamed video seconds

1 512 640 (512+256) 100% of V secBS1 + 33% of V secBS2

2 768 640 (512+256) 66% of V secBS2 + 100% of V secBS3

3 256 640 (512) 100% of V secBS4

4 512 none already done...
avgBW = 640kbps

Table 2.2: Smoothed streaming with increased streamout bandwidth

Figure 2.4: Higher streamout bandwidth allows decoding without prefetching

2.2.3 Reduced Bitrate by Adaptation

If we need to keep the 512 kbps streamout bandwidth under all circumstances (eg.

the underlying network does not support a higher bandwidth), we have to reduce

the overall average bitrate by applying some kind of adaptation to the whole video

stream. Hereby we again prevent a client buffer underrun, since all V secBSs are

smaller by a certain percentage.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 12

This is obvious, since if we multiply every V secBSk of a video by a certain factor

β, also the average is adjusted by the same factor β (eg. β = 0.66 represents a 33%

reduction).

avgBW × β =

∑numSec
k=1 (V secBSk × β)

numSec

This reduction might happen by re-encoding the stream at a lower quality, or

just by dropping some frames or any other adaptation technique available. Table 2.3

shows the smoothed approach on an adapted stream with only 66% of its original

size. With this reduction, no prefetching is needed.

MPEG-4 video adapted
video (66%
of original)

smoothed streamout

second bitsize
[kbits]

bitsize
[kbits]

bitsize [kbits] streamed video seconds

1 512 341 512 (341+171) 100% of V secBS1 + 33% of V secBS2

2 768 512 512 (341+171) 66% of V secBS2 + 100% of V secBS3

3 256 171 512 (341) 100% of V secBS4

4 512 341 none already done...
avgBW = 512kbps

Table 2.3: Smoothed streaming of an adapted stream

2.2.4 The Client Buffer Tunnel

The main goal of smoothed streaming is to avoid draining the buffer, so there is

always a V secn at time Psecn available. Prefetching V secs or increasing of V secBS

throughput (either by increasing streamout bandwidth or decreasing the V secBS by

adaptation) means to increase the need of a larger client-side buffer. Especially on

memory-constrained mobile devices, there are restrictions on the maximum available

client buffer size, so we can only buffer a limited number of V secs to overcome longer

peaks in the video. For every video, we have to find out a streamout bandwidth,

which fits in between the buffer minimum (the completely empty buffer) and the

buffer maximum (absolutely full buffer). This safe area is called the buffer tunnel.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 13

Figure 2.5: Buffer tunnel with different streamout bandwidths

Figure 2.5 illustrates the previous video example with a buffer size of 768 kbits.

It shows the minimum stream bandwidth in dark blue (640 kbps), that allows timely

decoding of V secs and a maximum stream bandwidth in light green (768 kbps),

that will never cause overflow to the buffer. So the streamout bandwidth may vary

between 640 kbps and 768 kbps (the light blue area) to always stay in the tunnel (the

gray area) and hereby always satisfies buffer constraints. If the streamout bandwidth

exceeds the maximum stream bandwidth (eg. 1024 kbps) or falls below the minimum

(eg. 512 kbps), a buffer overflow or underflow is shown as red triangles.

2.3 Related Work

The area of buffer smoothing algorithms with special respect to variable bitrate of

MPEG streams is discussed in many publications eg. [10, 11, 12, 13]. Different

algorithms for achieving optimum buffer usage or excessively constant streamout rate

are introduced. Also histograms and autocorrelation functions for better smoothing

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 14

are derived from VBR streams in [14].

Some of the proposed algorithms also come up with multiple changes of streamout

bandwidths over time, which allow even better buffer usage than a single streamout

bandwidth for the whole video. Optimizations are done to reduce the number of nec-

essary bandwidth changes or to prevent radical and massive changes to the streamout

bandwidth.

All of the previously mentioned attempts on stream smoothing ignore unpre-

dictable changes in network bandwidth due to the underlying best effort networks.

They assume guaranteed services, either achieved by special networks like ATM or

by intelligent routers in connection with software solutions like the Resource Reser-

vation Protocol (RSVP) [15]. In all cases of re-calculating the changing streamout

bandwidths, this always relies on renegotiation of quality of service (QoS) for network

streamout, which is not available on best effort networks.

Since there is no way to guarantee a streamout bandwidth over a best effort

network like the Internet, all pre-calculated analysis of the video stream can only be

a good hint and starting point for intelligent streaming, not the final solution.

When the available network bandwidth decreases and falls below the a priori

calculated streamout bandwidth, the streaming system has to react somehow. If the

buffer fill level is high enough, it will ignore the bandwidth reduction and will just

continue to send out data with lower bandwidth. This approach of modifying the

streamout bandwidth according to network feedback has been discussed in [16]. Note

that, if high bandwidth reduction is necessary because of congestions, video playout

will still soon stop since there are not enough buffered V secs in the client side buffer.

The biggest downside of the approach of [16] is based on the authors’ requirement

to always keep the buffer in a medium fill state when the network bandwidth is

at an acceptable level, so this results in very high and rapid fluctuations in the

adjusted streaming bandwidth which also could distract competing streams like TCP

connections.

To better reflect immediate and on demand streaming without complete knowl-

edge of the full video stream (which is not available on eg. intermediate routers

or network gateways), the needed streamout bandwidth can be detected in a cer-

tain window of time (eg. 10-60 seconds). Here, the streaming bandwidth has to be

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 15

recalculated whenever a new V sec is available in the smoothing engine [17], which

increases the processing needs on intermediate nodes. This windowed approach still

leads to fluctuations in the calculated streamout bandwidth, but – because of the

window – those fluctuations are smoother in comparison to the previosly mentioned

approach.

Nevertheless, if there is a forseeable buffer underflow because network bandwidth

is too low to fill up buffers in time, we have to introduce new methods of preventing

buffer underflow. The best way to do so is to adapt the stream dynamically by eg.

dropping certain frames. [18] describes a way how to drop frames if a V secBS exceeds

the given (but fixed) streamout bandwidth. Unfortunately, the authors do not take

into account changing network bandwidths (which is one of the main problems within

best effort networks) but assume a fixed (but maybe still too low) bandwidth for the

full session time. They are preparing the frame discard scheme in an offline process

before the streamout starts.

[19] tries to solve the problem of changing network bandwidth in best effort net-

works and reacts with frame dropping. To do so, it ignores coding dependencies,

which are inherent in modern codecs. This means that all frames have to be coded as

self-standing I-frames, which heavily increases the overall needed average bandwidth.

The authors analyze the video in an offline process which also reorders large-sized

frames whithin the stream, so when streaming is performed, frames are sent out of

order, which introduces more latency and higher buffer requirements in general.

2.4 The Proposed Static Streamout Analysis Al-

gorithm

To support a streaming server with good hints on the needed streamout rate, the

following section describes an algorithm which calculates the exact bandwidth which

is needed to keep a variable bitrate stream decodable and to avoid buffer underrun.

Static and a priori analysis of a video stream enables us to come up with the

minimally needed streamout bandwidth, also taking advantage of prefetching time.

The proposed algorithm also takes into account buffer size restrictions and a maximum

amount of acceptable prefetch seconds.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 16

Usually, the needed streamout bandwidth to fulfill all requirements on decode-

ability and buffer constraints, is noticeably higher than the average bitrate, since

bandwidth variations have to be compensated. This is an important discovery, since

it shows that it is not enough to stream out a video solely at its average bitrate, but

most certainly it has to be streamed out with a higher bandwidth (the measurements

on various streams done in this thesis at various average bitrates have shown a nec-

essary increase of approx. 7 - 15% for the average streaming rate to avoid a buffer

underrun).

Please note, that this work primarily focusses on today’s Internet as a best effort

network, so we only want to use statical analysis of variable bitrate streams as a basis

for further adaptation hints in a dynamically changing streamout environment. In the

following chapters, this offline calculated streamout bandwidth will be combined with

intelligent dynamic frame dropping to fullfill buffer constraints even under changing

network bandwidth, including viable solutions for packet loss.

Focussing on performance, our proposed algorithm was kept very simple and

hereby fast. This simplicity makes it usable in various time-constrained scenarios like

a highly frequented video streaming server. Given a pre-encoded video with highly

varying V secBSk (as shown in Figure 2.6(a)), an average bandwidth requirement of

avgBW =

∑numSec
k=1 V secBSk

numSec

Further, a given client is offering a certain buffer size and is accepting a configurable

prefetching time.

We want to stream out a given video with one constant streamout rate

(streamBW) for each Ssec to a given client, without breaking client buffer con-

straints. Please note, that this algorithm is used as a basis, but not as the final

solution to overcome bandwidth variations in best effort networks. As discussed in

the following chapters, this concept will lead to satisfactory results only in connection

with stream adaptation and stream switching.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 17

2.4.1 Detailed Description of the Algorithm

To start the analysis, we initialize streamBW with the average bit rate of the video

and set the prefetching time to zero. Within the first streamout second Ssec1, we

simulate a streamout of as much of V secBS1 as streamBW allows. If the client side

buffer is not full yet and there is some bandwidth of the streamBW left, we continue

with V secBS2 and so on. If the currently availabe streamBW is used up or the client

buffer is full, we have to delay the sending and continue later within Ssec2.

Since we have no prefetching time set, the client immediately starts to decode

V sec1 after receiving the first Ssec worth of data, which is called the playout second

Psec1. We deduct the size of V secBS1 from the client buffer, which virtually repre-

sents the decoding of V secBS1. After that, we enter Ssec2 and continue to stream

more video seconds worth of data (V secBSs).

If we run out of V secBSs in the client side buffer, which means that we could

not accurately decode the needed full V secBSi at playout second Pseci, we have to

increase the prefetching time and start all over again. By increasing the prefetching

time, we hopefully will be able to decode the full video from V sec1 up to V secn (see

Section 2.2.1).

If the prefetching time reaches the accepted maximum (eg. 8 Ssecs), we have to

restart all calculations with an increased streamout bandwidth and with prefetching

time reset to zero again. Again, we hope that the increase of bandwidth will allow us

to decode all V secs of the video (see Section 2.2.2). If the decoding fails even with

this higher streamout bandwidth and a zero prefetching time, we will try to increase

the prefetching time again until its maximum is reached. Then we will increase

the stream bandwidth again. The loop ends with a valid prefetching time and a

streamBW that allows accurate decoding of the entire video, or stops after detecting

that this stream is not streamable under the given buffer constraints.

Assuming that the client side buffer is reasonably proportional to the average video

bandwidth, this algorithm will find a solution. If variations in the video force a very

high streamout bandwidth and prefetching, but the buffer cannot hold enough data,

there might be no feasible streamout plan. This is not an error in the algorithm, it

just shows, that this video cannot be displayed without any decoding problems under

those buffer circumstances. The only way to find a fitting streamout bandwidth is to

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 18

increase the buffer or to reduce the average bandwidth of the video by eg. re-encoding

or adaptation (see Section 2.2.3).

2.4.2 Implementation Results

The results of the proposed algorithm are discussed using the “Big Show Both” video

with 520 V secs (13000 frames), which has an average bitrate of 444 kbps, where

V secBS range from under 200 kbits up to 700 kbits. It was encoded using the

Microsoft reference software for MPEG-4 [20], which produces high bitrate variations

over various V secs. The yellow line in Figure 2.6(a) nicely shows this high variation

in the size of the actual V secBS.

Our statical analysis calculates a needed streamout bandwidth of 495 kbps with

a prefetching time of eight seconds. The average bitrate of 444 kbps is shown by the

horizontal green line, the calculated streamout bandwidth is shown as the red line at

495 kbps. The really streamed bandwidth (magenta line) should equal the calculated

streamout bandwidth, but since the granularity is on a frame per frame basis, it does

not always match it. Anyway, it is always equal or below the calculated streamout

bandwidth.

This algorithm for statical analysis was implemented as a C++ program, which

takes an MPEG-4 video elementary stream as input.

There are some configurable variables:

• MAX PREFETCH SECS defaults to 8, but could be set according to the application’s

needs and/or according to the user’s acceptance.

• INC FACTOR is set to 1.01, so if the used prefetching time reaches

MAX PREFETCH SECS, the streamBW is multiplied by this factor and the

prefetching time is set to zero again.

• INC BUF FACTOR is set to 1.05 and is used to climb up to the minimally needed

clientside buffer, to get the video through (the exact description follows below).

• MAX STREAM BW gives an upper limit of the network bandwidth. If the calculated

streamout bandwidth is higher than this value, then there is no feasible solution.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 19

• MAX BUFFER SIZE gives an upper limit of the client side buffer. If the calculated

buffer is higher than this value, then there is no feasible solution.

The software comes up with different statistics and draws gnuplot curves to visu-

alize the buffer and streamout behaviour over the video time. There are four different

situations/setups which are simulated by the software. These are discussed as follows.

2.4.2.1 Optimum Buffer with Minimum Streamout Bandwidth

In the first setup, the algorithm tries to find an optimum buffer size, so the streamout

bandwidth is kept at a minimum and the buffer is never full or empty. Note that,

whenever the buffer would be full, the streamout bandwidth has to be severely reduced

to not flood the buffer. So basically, eliminating the buffer as a restraining factor

favours a lower and constant streamout bandwidth.

The algorithm starts searching with a very small buffer size and gradually in-

creases by INC BUF FACTOR. For the used test video, we need 16 Mbits of buffer and a

streamout bandwidth of 495 kbps with an eight second prefetch (see Figure 2.6(a)).

Keep in mind that the average bandwidth of this video was only 444 kbps!

2.4.2.2 Minimum Buffer with Minimum Streamout Bandwidth

In the next setup, we want to keep the already calculated minimum streamout band-

width, but we also want to reduce the buffer to its minimum. To reduce the needed

buffer size we accept that the buffer reaches a very high fill level (which results in a

reduced streamout rate for the time of high fill level), but of course no buffer under-

flows. This setup comes up with the optimum buffer and bandwidth combination for

this stream, since it requires low network bandwidth and optimally uses the buffer.

The algorithm keeps the minimum (and hereby optimum) streamout bandwidth

and starts with a buffer set to zero. From here we gradually increase the buffer until

the fixed streamout bandwidth does not endanger the buffer fill level to underflow.

Figure 2.7(b) shows the client buffer, which is restricted to 4854 kbits (607

KBytes). Due to the first eight prefetch Ssecs, the buffer is well filled with the

fixed streamout bandwidth from before set to 495 kbps. When the decoder starts

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 20

playing V sec0 up to V sec180, which are encoded at bitsizes high above the calcu-

lated stream bandwidth, the buffer is drained to nearly its minimum (compare with

the high bandwidth variations of the original stream (yellow line) in Figure 2.7(a)).

V sec180 to V sec200 are small-sized, so the buffer refills quickly but later drains again.

At V sec300, a sequence of small-sized V secs allows the buffer to reach its maximum.

This results in a reduction of the really streamed out bandwidth, since, to avoid

buffer overflow, we can only send as much data as we release from the buffer within

each V sec. This is also shown in Figure 2.7(a), where the really streamed bandwidth

massively goes down as long as the buffer is full.

Figure 2.7(c) shows the client-side buffer tunnel with its maximum and minimum.

The actual fill grade of the buffer obviously always stays in between those bounds.

In close correlation to Figure 2.7(b), at V sec180 we nearly run out of buffer, whereas

at V sec300 to V sec400, the buffer is filled to its maximum.

2.4.2.3 Absolute Minimum Buffer with High Streamout Bandwidth

In this setup, the goal is to find the lowest possible client buffer requirement, when

streamout bandwidth is not the bottleneck (Note that in the previous section the

network was also taken into account). For this, the algorithm starts with a maximum

buffer size which equals the average bandwidth of the stream, so for a constant bitrate

stream, the buffer would be capable of storing exactly one V secBS in advance. This

obviously will fail for a variable bitrate stream, so the algorithm will have to increase

the buffer step by step. First it tries to find out a fitting streamout bandwidth, so

the buffer does not underflow. If no solution was found, the buffer is increased by

INC BUF FACTOR. Then a new attempt is initiated, looping until it finds a buffer level

and streamout bandwidth, where problem-free streaming is possible. For the test

video with an average bandwidth of 444 kbps, a minimum buffer of 760 kbits and a

needed streamout bandwidth of 715 kbps with one second of prefetching time was

calculated (see Figure 2.8(a)). The test shows that the buffer in Figure 2.8(b) is

always at a very high fill level and this forces the needed streamout bandwidth to

adjust to the highly peaky bitsize (V secBS) variations. The calculated streamout

bandwidth is even higher than the maximum peak of the variations, so this is not

desirable for any streaming environment. It just minimizes the needed buffer.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 21

2.4.2.4 Maximum Buffer with High Streamout Bandwidth

This scenario is not really applicable to real streaming environments, nor does it reflect

real buffer scenarios. Still, it nicely simulates a burst scenario in an uncongested

network. It just simulates a parameterize and very high MAX STREAM BW with a huge

buffer MAX BUFFER SIZE and streams the video with this streamout bandwidth. The

behaviour nicely shows how the buffer is fastly filled in the first seconds and then

keeps full over the video life-time. The streamout rate massively drops when the

buffer is full.

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 22

 0

100

200

300

400

500

600

700

800

 0 100 200 300 400 500

B
an

dw
id

th
 [k

bp
s]

Playout seconds

streamout BW
average BW

Vsec BW
real BW

(a) Bandwidth variations over time

 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

 0 100 200 300 400 500

F
ill

 le
ve

l [
kb

its
]

Playout seconds

maximum
fill level

(b) Buffer fill level over time

 0

50000

100000

150000

200000

250000

 0 100 200 300 400 500

T
ra

ns
fe

rr
ed

 d
at

a
[k

bi
ts

]

Playout seconds

minimum
maximum

actual

(c) Buffer fill level within the tunnel boundings

Figure 2.6: Optimum buffer and minimum streamout bandwidth

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 23

 0

100

200

300

400

500

600

700

800

 0 100 200 300 400 500

B
an

dw
id

th
 [k

bp
s]

Playout seconds

streamout BW
average BW

Vsec BW
real BW

(a) Bandwidth variations over time

 0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 0 100 200 300 400 500

F
ill

 le
ve

l [
kb

its
]

Playout seconds

maximum
fill level

(b) Buffer fill level over time

 0

50000

100000

150000

200000

250000

 0 100 200 300 400 500

T
ra

ns
fe

rr
ed

 d
at

a
[k

bi
ts

]

Playout seconds

minimum
maximum

actual

(c) Buffer fill level within the tunnel boundings

Figure 2.7: Minimum buffer and minimum streamout bandwidth

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 24

 0

100

200

300

400

500

600

700

800

 0 100 200 300 400 500

B
an

dw
id

th
 [k

bp
s]

Playout seconds

streamout BW
average BW

Vsec BW
real BW

(a) Bandwidth variations over time

450

500

550

600

650

700

750

800

 0 100 200 300 400 500

F
ill

 le
ve

l [
kb

its
]

Playout seconds

maximum
fill level

(b) Buffer fill level over time

 0

50000

100000

150000

200000

250000

 0 100 200 300 400 500

T
ra

ns
fe

rr
ed

 d
at

a
[k

bi
ts

]

Playout seconds

minimum
maximum

actual

(c) Buffer fill level within the tunnel boundings

Figure 2.8: Absolute minimum buffer and high streamout bandwidth

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 25

 0

2000

4000

6000

8000

10000

12000

 0 100 200 300 400 500

B
an

dw
id

th
 [k

bp
s]

Playout seconds

streamout BW
average BW

Vsec BW
real BW

(a) Bandwidth variations over time

 0

5000

10000

15000

20000

25000

30000

35000

 0 100 200 300 400 500

F
ill

 le
ve

l [
kb

its
]

Playout seconds

maximum
fill level

(b) Buffer fill level over time

 0

50000

100000

150000

200000

250000

300000

 0 100 200 300 400 500

T
ra

ns
fe

rr
ed

 d
at

a
[k

bi
ts

]

Playout seconds

minimum
maximum

actual

(c) Buffer fill level within the tunnel boundings

Figure 2.9: Maximum buffer and high streamout bandwidth

CHAPTER 2. SMOOTHED VIDEO STREAMOUT 26

2.5 Conclusion and Future Work

The most important finding of the previous measurements is the fact, that the really

needed streamout bandwidth is always higher than a measured average bandwidth

(for different videos used within this work, coded at various average bitrates there

was an increase of about 7 - 15%). This is triggered by the high V secBS variances

of modern variable bitrate (VBR) codecs and the limited maximum prefetch time,

which is acceptable in a certain user application environment.

When the proposed algorithm is used for stabelizing the streamout bandwidth

(see Section 2.4.2.1) and optimizing the buffer fill level (see Section 2.4.2.2), the

algorithm offers a fast way to calculate the minimum needed streamBW to fulfill

minimum client buffer constraints for a certain video stream. This results in a single

streamBW for the full video (V sec1 . . . V secn) but might also be applied to arbitrary

subsequences, resulting in multiple streamBWs for each subsequence.

So the video can be split up in eg. the first half V sec1 . . . V seci and the second

half V seci+1 . . . V secn, resulting in two streamBWs. This partitioning can be applied

on different video scenes or just because the full video was not yet available in the

streamout server or proxy. When used during streamout at an intermediate node,

an intermediate buffer can be used as a basis for an estimation of the streamBW ,

which traverses the full video like a sliding window. The larger this buffer is, the

more accurate the streamBW can be calculated. This introduces, however, a certain

latency, until this buffer is filled for the first time. From then, the data is forwarded

in a FIFO (first in - first out) manner, so no more latency is added.

Future work will have to show if this sliding window approach has performance and

accuracy impacts on the smooth streamout of a video. The evaluation of this is a very

complex task and raises some further issues, which have to be taken into account.

Most problematic is the fact that there are many other influences on the actually

chosen and available bandwidth such as added congestion control, retransmissions

and intelligent buffer management. Those will be described in the later chapters.

CHAPTER

3 Methods of Video Adapta-

tion

3.1 Overview

Every pre-encoded video stream is bound by some input parameters at encoding time.

This might be frame rate, SNR quality, or spatial resolution. The used algorithm

(codecs like MPEG-4 or ITU-T H.263+) leads to special client-side requirements in

buffer memory and processing power. Those requirements are further dependent on

used codec optimizations within the stream like high-complexity frames, forward error

correction, and enhanced segment separation for improved error resilience.

Sending video data through the network involves routers and different types of

underlying networks, which are subjected to different load situations, with different

latencies and packet loss rates.

We can overcome network constraints with the right amount of intelligence in the

network or by some other means of packet retransmission and correcting mechanisms,

so that the data does arrive at the terminal (client) side. Still, to be capable of

receiving and finally decoding a stream without any errors, we need adequate support

on the terminal side, like sufficient buffers and processing power, a fitting display

resolution. Even color and frame rate capabilities (LCD might have lower update

frequencies) play their role.

We distinguish between the following two types of discrepancies between a pre-

encoded video and the destination terminal:

Static discrepancies are not changing over the session life time. They can be ne-

gotiated once before streaming starts, and so the video stream can be prepared/chosen

CHAPTER 3. METHODS OF VIDEO ADAPTATION 28

to meet the constraints introduced by them.

This includes

• Terminal capabilities like color depth, resolution, processing power, available

buffer, or maximum display frame rates. Also the relationship between used

processing power and available battery life might force a terminal to reduce

processing power.

• User capabilities like the user is visually impaired, or he is not allowed (willing)

to watch scenes with violent content.

• Network capabilities like known minimum latency and maximum jitter, given

bandwidth constraints by the underlying medium.

Dynamic discrepancies will occur at any time during a session. This includes

some degradation of one capability (like bandwidth) at some point in time, but also

the strengthening of this capability back to the value that was proposed in the statical

analysis.

This includes

• Terminal capabilities like the (handheld) terminal moves into glaring light or

into darkness. Therefore the overall brightness/contrast of the video has to be

adjusted. This could be done in the local hardware, but this would also decrease

available processing power for decoding and also would consume more battery.

Further, the display backlight will have to be turned on, which reduces battery

life even further. As a long-term consequence, this will indirectly enforce a

power-saving mode with less available processing power.

• User capabilities like the user prefers higher (more detailed) quality over more

fluent frame rate for the next scene.

• Network capabilities like changes in the available bandwidth on best effort net-

works, caused by other cross traffic or temporal outages. Further, dynamic

calculations could show that, for actual bandwidth fluctuations, the terminal

will not provide a sufficient buffer fill level.

CHAPTER 3. METHODS OF VIDEO ADAPTATION 29

Taking into account all those obstacles, it is fairly reasonable to search for meth-

ods to perfectly fit a given (and ever-changing) video stream to a given capabilities

scenario.

In the simplest case, this can be done by preparation of multiple streams with

adjusted settings, which hopefully cover all possible variations. This obviously takes

extra time and harddisk space, which should also be taken into account. Further, this

hardly can be used to cope with dynamically appearing discrepancies.

To be resistant to either static or dynamic discrepancies, we are looking for meth-

ods, which perform some kind of adaptation on a video stream, so that it fits under

the new constraints.

If processing power is not an issue, the video could be transcoded on the fly. So on

the sender side, the by-passing frames are decoded, then adapted in the uncompressed

domain, and are finally re-encoded with adjusted settings. By that, the sender could

optimally fit the terminals’ needs, at the cost of extra processing power, higher buffer

requirements and added latency.

But even with always bigger and faster hardware on the market, whenever the

amount of parallel transcodings is increased, all available resources will be used to

full capacity again. Further, also the requested quality of multimedia presentation is

growing in the future, so where people accept TV-quality today, the future require-

ment will be DVD-like quality, which means higher resolutions and hereby higher

computational needs.

Scalable codecs try to enhance a pre-encoded stream by some means, so that highly

efficient adaptation can be conducted on this stream. Highly efficient in this context

means, that adaptation has to happen in the compressed domain with low processing

and buffering requirements and nearly no added latency.

Unfortunately there are some static and dynamic discrepancies, which were not

solved within a scalable codec yet, so they have to be resolved by transcoding. Open

research topics on scalable codecs for the compressed domain are e.g. streams sup-

porting visually impaired/normal-sighted people or fast adjustments in the color his-

togram.

In this chapter, we discuss scalable codecs. To read more about pre-encoded

streams at different encoder settings, and how this still could be used to adjust to

CHAPTER 3. METHODS OF VIDEO ADAPTATION 30

different capabilities by stream switching, see Chapter 5.

3.2 Scalable Codecs

The following will give a quick overview of well-known types of scalability. Those

scalability methods might be used to compensate either static or dynamic discrep-

ancies between the pre-encoded video and the destination terminal. A more detailed

overview is given in [21, 22, 23].

3.2.1 Temporal Scalability

The simplest and therefore most widely practiced method is to reduce the number of

frames per second.

By dropping a frame at the server side, and hereby not sending it, we immediately

decrease the needed bandwidth by the frames’ size. Further, the destination terminal

does not have to decode the unsent frames either. Frame dropping is only penalized

with a more jerky visual experience. Increased visual experience can be provided

by introducing special temporal filters at the client side decoder, which interpolates

intermediate frames, like RealPlayer does for very low bit rates [24].

If the video is encoded with eg. Motion-JPEG, each frame is decodable on its own

and totally independent from any other frame. Therefore those so-called intra-coded

frames can be dropped arbitrarily.

Modern and more efficient video codecs like MPEG-4 or H.263+ use more so-

phisticated methods like inter-coded frames, which therefore have remarkably smaller

bitrates for the same quality.

The following will only give a short introduction into different frame types, so

for more details on MPEG-4 codec techniques and intra/inter-frame coding, refer to

[25, 23].

Reference intra frames (so called I-frames) are intra-coded frames like in Motion-

JPEG, and they can be decoded without any other information. Further predicted

frames (P-frames) are referencing to the previous I-frames or P-frames. They save

space and only store visual differences (deltas) or even only motion vectors of some

picture regions, which have moved their position (think of a bouncing ball). A P-frame

CHAPTER 3. METHODS OF VIDEO ADAPTATION 31

is not decodable without the previous reference frame, but hereby is substantially

reduced in its data size.

Obviously, deleting either a P-frame or an I-frame renders the video undecodable

(or will cause at least severe display errors), until the next self-standing I-frame

appears in the stream.

To further reduce frame sizes, bi-directionally predicted B-frames were introduced

to diverse video codecs. B-frames are using the same coding ideas as P-frames, but

can refer to both forward and backward frames, so their chances to find similarities

or movement are even higher. But, and this fact makes them so interesting for

adaptation, B-frames are never using other B-frames as references, but are always

only taking into account P-frames or I-frames as reference points.

See Figure 3.1 for a visualization of the frame type dependencies.

Figure 3.1: Frame types and their dependencies in MPEG-4

3.2.2 SNR Scalability

The quality of a still image can be measured by its Signal-to-Noise Ratio (SNR).

Everything within the image, which does not correlate with the original image, is

called “Noise”. Still, to reduce data rates, every lossy codec introduces discrepancies

between the original and the result image. The SN-Ratio decreases (so the signal

converges more and more to noise) with the level of compression, which obviously

introduces information loss.

A bit-rate reduction can only be achieved by decreasing the quality and hereby

decreasing the Signal-to-Noise Ratio. This might be necessary in terms of processing

needs, but mainly because of storage/streaming bandwidth needs.

The easiest but most expensive way is again transcoding. But instead of com-

pletely do cascaded full decoding/re-encoding, work has been done to increase SNR

transcoding efficiency by re-using already calculated motion data [26, 27, 28].

CHAPTER 3. METHODS OF VIDEO ADAPTATION 32

The MPEG-4 Advanced Scalable Profile [29] allows the separation of the encoded

video into two streams: a base layer for low quality and an optional enhancement

layer with the high quality information (see Figure 3.2). The base layer is decodable

on its own, but the enhancement layer is only usable with the base layer at hand.

Figure 3.2: MPEG-4 scalable profile provides a base and an enhancement layer

Fine grained SNR scalability can be provided by a progressive video codec, which

means that the displayed quality can be refined step by step, depending on the amount

of already available data. Like illustrated in Figure 3.3, the enhancement layer can

be truncated at any position, and the remaining data is used to get the best possible

quality.

Figure 3.3: The enhancement layer can be truncated arbitrarily

3.2.2.1 Wavelet Transformation

Wavelet transformation is an advanced method for SNR scalability. Wavelet-based

codecs are progressive and, contrary to the Discrete Cosine Transformation (DCT),

they use the so-called Discrete Wavelet Transformation (DWT), which allows a higher

compression ratio and better bitrate adjustment for still images. The newest JPEG

2000 standard by the ISO/IEC JTC1/SC29/WG1 (JPEG) committee is completely

based on wavelet techniques, and highly outperforms the older JPEG algorithm on

quality and size.

MPEG-1/2/4 codecs use JPEG-based DCT, but independent attempts were made

to exchange all JPEG parts with the newer JPEG 2000 standard [30].

CHAPTER 3. METHODS OF VIDEO ADAPTATION 33

Also the official ISO/IEC JTC1/SC29/WG11 (MPEG) committee has installed a

video subgroup, which, categorized as MPEG-21 Part 13, is working on standard-

conformant integration of wavelet-based (and other) scalable video codecs for

MPEG-4.

An alternative video codec, fully based on wavelet technology, and highly opti-

mized for wireless networks, is presented in [31].

3.2.2.2 Fine Granularity Scalability (FGS) in MPEG-4

Fine Granularity Scalability (FGS), which was introduced four years ago to the

MPEG-4 standard, also offers progressiveness in the enhancement layer, so it can

be truncated at any arbitrary position and the FGS decoder will use the remaining

bits for decoding (see Figure 3.3). But for coding simplicity, the MPEG committee

decided on incrementally stored DCT coefficients, organized in multiple bit-planes,

instead of wavelet coding. The more bit-planes are received, the more quantization

errors between the original stream and the base layer can be eliminated [32].

Those (normally seven) bit-planes are concatenated together and can be seen as

one single enhancement layer. The lower bit-planes are smaller but bring a higher

gain in quality [33].

Figure 3.4 shows I, P and B-frames with low quality base layers and their en-

hancement layers. These enhancement layers only use each corresponding frame’s

base layer for prediction, so the enhancement layer can be dropped or arbitrarily

truncated on a per-frame basis.

Figure 3.4: FGS frames with their base and enhancement layer

CHAPTER 3. METHODS OF VIDEO ADAPTATION 34

Though arbitrary truncating is allowed, better results can be gained, when the

cuts are closer to bit-plane boundaries [34]. This motivates the question, how fine

granular FGS really is. To take advantage of both the knowledge of better results at

boundaries and the possibility of cutting everywhere, close cuts at boundaries should

be favoured but, if the bit-plane boundaries are too far off, a cut inbetween can be

performed.

The decision taking on the cutting point could be implemented with some weight-

ing on bit-plane boundaries, which prefers a cutting point alignment to close bound-

aries.

It is known, that FGS sacrifices display quality up to 2 dB PSNR, if compared to

a non-scalable codec at a given bandwidth [32]. Still, trying to ignore a progressive

codec as FGS, and falling back to a simple solution with storing a feasible number of

multiple versions of a non-scalable video, will fail, because those versions will hardly

exactly fit the ever-changing network conditions at all times.

Nevertheless, the issue of coding overhead is highly discussed in the MPEG con-

sortium and there are proposals on various extensions to standard FGS to reach

comparability to non-scalable codecs in terms of coding efficiency, eg. by adding mo-

tion compensation [35] or implementing motion compensation from prior reference

enhancement layers [36].

There is a slow implementation available by the MoMuSys Project [37], and some

not publicly available real-time encoders/decoders are emerging in Microsofts research

labs.

3.2.3 Spatial Scalability

Adjusting a video to a terminal’s given maximum resolution could be done by receiv-

ing any resolution video and doing the up-scaling or down-scaling after decoding the

video. This obviously consumes processing power and (in the down-scaling scenario)

wastes network bandwidth for unneeded data.

Scaling a picture resolution by half in both axes could reduce encoded frame size

and processing needs close to a factor of four.

The MPEG-4 Advanced Scalable Profile [29] also supports spatial scalability with

two layers: a base layer for the low resolution and an optional enhancement layer

CHAPTER 3. METHODS OF VIDEO ADAPTATION 35

with the high resolution information (see Figure 3.2).

Besides that, other approaches have been made to allow spatial scalability. [38]

describes a scheme to extend two hardware implementations of non-scalable video

codec profiles (like MPEG-2 or MPEG-4 simple profile) with added support for spa-

tial base and enhancement layers. This allows cost-efficient introduction of spatial

scalability to already available settop boxes, and is within comparable qualitative

results.

Nevertheless, this rigid scheme with a base and an enhancement layer only provides

two different resolutions, which might not fit the given terminal. To fit any display

resolution, more fine-grained spatial scalability is needed. This could be achieved by

a proposed extension to MPEG-4 FGS on hybrid spatial and SNR scalability [39] (see

Figure 3.4).

High-quality Picture Scaling To generate the lower resolution base layer, any

of the previously mentioned codecs has to do down-sampling of the original video in

the uncompressed domain. Also, if on-the-fly transcoding is chosen, CPU-intensive

rescaling has to be done.

If the network is only capable of a base layer in a low resolution, but the termi-

nal could provide a higher one, the terminal has to do up-sampling of the already

decoded video. Various interpolation methods can greatly improve displaying quality

by eliminating blocking effects. Taking up this idea, it could be used as a kind of

scalable codec on its own.

Whenever image scaling is performed, different algorithms can be applied. Ac-

cording to [40], scaling could be addressed by the following methods (see Figure 3.6 for

visual comparison (images taken from [40])), which vary in performance and quality

issues:

• Nearest neighbour interpolation, which is the computationally fastest but results

in the most distorted scaled image. In the upscaling case, it is simply duplicating

one source pixel to the (upscaled) destination pixels. So an X×Y upscaling by

a factor of 2 results in duplicating one source pixel to four destination pixels of

the same value (see Figure 3.5). When performing downscaling by eg. factor 2,

just one pixel out of four source pixels is chosen, ignoring the other three. The

CHAPTER 3. METHODS OF VIDEO ADAPTATION 36

pixel position is determined by the following formula:

newImage[x, y] = oldImage[round(x× scaleFactor), round(y × scaleFactor)]

Figure 3.5: Nearest neighbour interpolation for upscaling and downscaling

• Bilinear interpolation calculates a linear weighted sum of the four closest neigh-

boring pixels.

• Bicubic interpolation uses polynomials of higher powers and B-splines. Despite

higher computational needs, it blurs/smears the picture, so it should only be

used for upscaling.

• Martinez-Lim interpolation is based on a line-shift model for de-interlacing PAL

or NTSC transmissions. It uses interpolated in-between lines, to receive even

better scaling results.

• Frequency-domain techniques can be used in the compressed domain, more pre-

cisely in the DCT frequency domain. Arbitrary rescaling purely in the com-

pressed domain is hard to implement because of fixed block sizes like 8x8 or

16x16. Still, if those limitations of block sizes are acceptable, highly efficient

and distortion-free conversion is possible to multiples of 2.

Choosing the right interpolation method with the highest possible quality within

given computational bounds will be important for efficient stream switching. This

enables switching down to low resolution stream versions and displaying them in an

upscaled manner (see Section 5). Unfortunately, only nearest neighbourhood, which

gives worst results, is feasible in real-time and in pure software, DCT domain resizing

is not supported by available MPEG-4 decoders, and only some modern graphics

cards offer bilinear interpolation support. Taking into account this drawback, in

further chapters, scaling is always performed with nearest neighbour interpolation.

CHAPTER 3. METHODS OF VIDEO ADAPTATION 37

(a) Original frame (b) Nearest neighbour interpolation

(c) Bilinear interpolation (d) Bicubic interpolation

(e) Martinez-Lim interpolation (f) DCT domain resizing

Figure 3.6: Interpolation method comparison for image downscaling

CHAPTER 3. METHODS OF VIDEO ADAPTATION 38

3.2.4 Object Based Scalability

Superior to other video codecs, MPEG-4 not only offers support for one single rectan-

gular video, but also for arbitrarily shaped videos [41]. It also allows the composition

of a scene out of multiple object streams [42], so it is possible to have a rectangular

background video with a bouncing ball as a shaped object stream and further, two

persons encoded as two separate object streams.

Shaped objects are encoded with a given alpha mask for the whole image, where

every pixel is accompanied by an alpha value in the range from zero to 255. This

allows fine-grained steps from completely opaque (alpha value is zero), over various

steps of shadiness up to total transparency (alpha value is 255).

The creation of video content with multiple video objects could either happen

during:

• Pre-Production at the studios, where foreground objects like persons are filmed

in front of blue screens and are then overlayed with the background, or

• Post-Production, with different algorithms which try to extract and separate the

different visible objects. Though this is in the early stages of research, there are

some interesting attempts. [43] exactly separates moving objects from a static

background, which is especially useful for surveillance cameras. [44] detects

moving rectangular areas, even if the background is also moving. This could

eg. separate a car from its background in a typical car chase scene.

If the video content is composed of multiple streams, it is easy to gain scalability

by just dropping the less important streams like the background [45]. To identify the

importance of a stream, manually added metadata stored in MPEG-7 [46] could be

used.

3.2.5 Region of Interest Scalability

If full dropping of a single stream is not needed (or no separated background and

foreground streams are available), different methods of scalability could be applied to

single streams, varying for certain regions. For example, we could increase the visual

CHAPTER 3. METHODS OF VIDEO ADAPTATION 39

quality of the important foreground speaker (eg. lower quantization of the according

macro blocks) and decrease the quality of the surrounding background.

This last example uses a well-known phenomenon of the human vison: only about

two degrees in our about 140 degrees vision span has sharp vision [47]. If an encoder

would know, where the watching person is looking at, it could increase the quality in

the region of interest by penalizing the background areas. In a real-time environment

for wide-screen video, a head-mounted eye-tracker could be used to extract the gaze

area [48]. For off-line preparation, a less personalized algorithm could be used. If

the region of interest is rather obvious (eg. for video telephony or a news speaker),

the encoder could be combined with a face recognition system and then focus on this

area [49].

3.2.6 Complexity Scalability

If a video stream has to be decoded on a weak client terminal, there some restrictions

on available processing power or memory may apply. Scalability could be used to

reduce complexity for weak terminals.

One example is the decoding of B-frames, including forward- and backward-

referencing for detected motion. This implies, that all three affected frames have

to be available in the decoder’s buffer, which increases memory needs. Further, this

implies a reordering of the frames when they are sent out. So if the display order of a

video sequence is IBPB..., the frames have to be reordered to network order, which

is IPBPB... (see Figure 3.7).

Figure 3.7: Reference frames are sent before referencing frames

CHAPTER 3. METHODS OF VIDEO ADAPTATION 40

When frames are sent over the network, each packet arrives with a certain latency.

After reordering frames, decoding of a B-frame will be delayed until all affected ref-

erence frames have been received at the client terminal. This might conflict with

real-time streaming or render impossible on very slow and high-latency networks.

The more references are allowed (eg. MPEG-4 AVC/H.264 can use up to 5 ref-

erence frames for one B-frame), the more buffer is occupied and the more latency is

introduced by network reordering.

Complexity scalability enforces either a reduced encoded framerate or a re-encoding

of B-frames into P-frames, since P-frames require less buffer and computational needs.

Further, scalable codecs with enhancement layers (spatial, SNR, fine-granular SNR)

always will demand higher processing power. Therefore, those enhancement layers

should be dropped in advance, before being sent out.

3.3 Combined Usage

3.3.1 The Universal Scalable Video Codec

Universal scalable video coding is an attempt to build a scalable codec where fine

granular spatial, temporal and SNR scalabilities are integrated together to provide

ubiquitous video access on any device through any network.

First steps into that direction have been done with proposals on hybrid fine-grained

temporal and SNR scalability, which not only introduces B-frames to the base layer,

but also adds an extra FGS enhancement layer between two base layer frames, which

hereby can be interpreted as intermediary B-frames [50]. Further proposals were

made for the hybrid fine-grained spatial and SNR salability codec [39].

Combining those two approaches enables scalability in the spatial, temporal and

SNR domain with MPEG-4 FGS [51]. Adaptation by various FGS codecs is evaluated

with the FGS-based streaming testbed [52], which is part of the MPEG-4 standard-

ization process. Still, severe coding overhead exists and further research has to be

done in this direction.

Assuming this universal scalable video codec will exist with good performance

in the future, another work analyzes the multi-criteria optimization problem which

arises, when more than one way of adaptation is possible within the same stream [53].

CHAPTER 3. METHODS OF VIDEO ADAPTATION 41

3.3.2 Chaining of Multiple Codecs

As long as the above mentioned universal scalable video coding based on FGS will not

overcome its problems in coding overhead and this codec is not available to the public,

other solutions have to be applied. Further, much more adaptation is possible, than

just in the temporal, spatial or SNR domain. There could be the need to add digital

watermarks and encryption, specially configured for a certain receiving terminal with

its unique key. Driven by MPEG-21 user capabilities [54], it could be possible to drop

certain, eg. violent scenes [55], which were first described in MPEG-7 metadata [46].

A given scalability framework (eg. the FGS testbed [52], or ViTooKi [56]), which

provides a client with an adjusted video stream, can access several different scal-

ing methods, so called adaptors, which might also be chained to receive a multi-

dimensional adaptation (eg. temporal and spatial). Those adaptation engines have

to be hinted by a client’s capabilities and quality of service (QoS) information [33].

Figure 3.8 shows, how an input stream is adapted by various consecutive adaptors.

Figure 3.8: Adaptation by a chain of adaptor plugins

ViTooKi – The Video ToolKit [56] incorporates such an adaptation engine and is

presented in this work later in Chapter 8. It is based on ideas discussed in [57, 58],

which outline a framework for adaptive proxy-caching of MPEG-4 videos.

CHAPTER 3. METHODS OF VIDEO ADAPTATION 42

Decisions on feasibility, necessity and the ordering of different adaptor plugins have

to be taken by mathematical rules or long-term heuristics [59]. Some work has been

done to feed a Prolog-based planner with descriptions of the input and output stream

properties, along with descriptions of many available adaptor plugins. This planner

then returns a chain of adaptation steps, which are always valid. It is possible to use

different heuristics to achieve optimal results in various domains like computational

needs or quality [60].

3.3.3 User-Centric Adaptation

Most of the above mentioned approaches try to find the optimum solution of needed

adaptation solely on mathematical or (in the best case) personal heuristics. Supe-

rior user acceptance can be reached, if also subjective measurements are taken into

account, which give a better hint on human preferences. This especially helps to pri-

oritize adaptation combinations within adaptation domains like temporal or spatial

adaptation.

3.3.3.1 Subjective Tests

[61] has incorporated the subjective measurements of human users into an adaptation

engine. People were allowed to rank combinations of SNR quantization, frame drop-

ping and spatial resolution with marks between 1 (poor) and 5 (excellent). Those

results where evaluated using the mean opinion score (MOS). The engine uses the re-

sults to offer better combinations of scalability to fulfill a given bandwidth constraint.

Problems in the conducted tests from [61] are the small number of combinations and

the extreme scalability settings. Eg. the resolution might be 640x480 or 320x240,

with either 30 or 10 fps. Given this, a user might only decide between very large but

choppy displaying or small with fast displaying.

Still, those results correspond with other work, which performed some user tests

on various video genres with changing frame rates and spatial resolution [62].

CHAPTER 3. METHODS OF VIDEO ADAPTATION 43

3.3.3.2 Monetary Issues on Quality

Adaptation is not only necessary because of hardware or network constraints, but

could also be used to incorporate differentiated pricing schemes for multimedia con-

tent. For preview purposes, a low quality base layer could be sent out freely, but each

extra step in enhanced quality is combined with increasing payments.

Subjective user tests with given budgets showed, that people prefer predictable

and consistent lower quality over higher quality with fluctuations. Further, their

results suggested that, when users accept a pricing scheme they develop strategies to

optimize their use of a limited resource [63].

Also MPEG-21 offers new means of describing special user preferences or digital

rights management. Future research and tests in real user environments will have

to prove the effectiveness and completeness of MPEG-21 digital rights management,

since it is quite forseeable that future multimedia consumption over the Internet will

not be free of charge [64].

CHAPTER

4 Detailed Analysis of Tempo-

ral Scalability

4.1 Overview

Most of today’s widely available video codecs, which are used in diverse applications

like Microsoft’s MediaPlayer, Apple Quicktime or Real One, do not support enhanced

scalability methods for spatial or SNR adaptation. The same is valid for open source

multi-codec libraries like FFmpeg [65] or XViD [66]. Still, all of them offer broad

support for simple temporal scalability by generating B-frames. The bi-directionally

predicted B-frames offer substantially reduced frame sizes and therefore make the

overall stream smaller and more robust to packet loss [67].

As discussed in Section 3.2.1, the only really easy and efficient temporal adaptation

is to drop B-frames. Simple and arbitrary frame dropping could accidently eliminate

I-frames or P-frames, which would cause severe decoding errors or drift.

According to [68, 69], novel approaches are presented, how the missing information

of dropped I- and P-frames could be approximated and motion vectors could be

adjusted in the compressed domain. This happens either by interpolating the four

adjacent motion vectors or by finding out the dominant motion vector. Still, doing

so implies extra algorithmic calculations and hereby increases the needed processing

power and the achieved quality is still not optimal. If there are enough B-frames

in each video second, it should not be necessary to drop any reference frames like

I-frames and P-frames. So in the following, we exclusively concentrate on B-frame

dropping.

Further, compared to any other type of adaptation (eg. spatial or SNR), dropping

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 45

B-frames is always the fastest. Also, studies have shown that:

. . . from a viewer’s perspective, reduction of frame rate provides the

best results regarding to the viewer’s comprehension of the video. Severe

degradation in spatial resolution or SNR will result in frames either too

small or too blurred for a viewer to perceive enough details, and even

worse, will distract viewers’ attention and harm the comprehension of the

entire video [70].

4.2 Frame Patterns

To take the highest possible advantage of temporal scalability, a video stream has to

be prepared to offer a maximum number of B-frames. This section will show, that this

maximum number is limited by various constraints and will come up with reasonable

values for various adaptation needs.

Available MPEG-4 encoders like the MPEG-4 Microsoft reference software [20] or

FFmpeg [65], allow us to choose between fixed and dynamic frame patterns.

If we decide on dynamic frame patterns, the encoder chooses when it is best to

use I-, P- or B-frames arbitrarily over the video stream and might come up with

patterns like IPPPPPBPPPBPPIPIIIPPBBP.... This decision taking increases coding

time, but will offer us a smaller bandwidth video. The downside of this is that we

will not have many B-frames in the stream, since the encoder preferrably decides on

P-frames to reduce buffering requirements and decoding complexity. The reason for

favoring P-frames is stated in the fact that consecutive P-frames not only decrease

decoding complexity, but also lessen buffer requirements. When comparing display

versus network order of frames (see Figure 3.7), it becomes evident that, for decoding

a B-frame, both reference frames of the B-frame have to be received in advance and

therefore also have to stay in the buffer until the next reference frame arrives.

If we specify a fixed encoder frame pattern, it will be repeated over the whole video

stream. Its length is defined by the frequency of intra-coded I-frames. Although the

frequency can be an arbitrary number, it is reasonable to be set to the video’s frame

rate (25 for PAL, 30 for NTSC, 15 for video telephony) or a multiple of it. The rest

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 46

of the frame pattern will be filled up with alternating P and B-frames, where we can

define the number of B-frames between two reference frames (see Figure 4.1).

Figure 4.1: The more B-frames between P, the farther their reference frames

Note that, if P-frames are lost, the video will be undecodable until the next I-frame

arrives. So for better error resilience, as a good tradeoff between coding efficiency

and fast resynchronization, a video should have an I-frame at about every second. If

bandwidth constraints are crucial, other reasonable values could be every 2, 5 or 10

seconds. A good reason for more frequent I-frames is, besides better error resiliance,

their exploitation as entry points for random access [24], or switching points for

different streams (find more about stream switching in Chapter 5).

Obviously, the more B-frames are in the stream, the more frames (and hereby

bytes) can be dropped without any consequence, except that a high drop rate will

lead to a more jerky visual experience.

With a frame pattern of 30 frames between each I-frame and with an increasing

number of B-frames between P-frames, Table 4.1 shows how the temporal scalability

increases and the possible minimum framerate decreases assuming that no I- or P-

frames are dropped.

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 47

pattern definition I+P-
frames

B-frames B-percent lowest achievable
fps (from 30 fps)

IBPBPBP. . . BPBPB P
1B→ P 1+14 15 50% 15

IBBPBBP. . . BBPBB P
2B→ P 1+9 20 67% 10

IBBBBPB. . . PBBBB P
4B→ P 1+5 24 80% 6

Table 4.1: Temporal scalability gains with increasing number of B-frames at 30 fps

4.3 Distances between Reference Frames

Further note that an increase of the number of B-frames also increases the distance

between each P-frame. Also each B-frame is farther away from its two reference frames

(see Figure 4.1). Obviously, this introduces larger picture differences (deltas), since

prediction has to be performed across multiple frames. Consequently, both, more

motion is detected and/or more quantized data has to be stored, which increases the

needed frame size. Obviously, this also increases the overall filesize.

For the following discussions, the measured video was “Big Show Both” in CIF

resolution (352x288) with 13000 frames, in a 30 fps scenario with a fixed pattern

with an I-frame every 30 frames. This gives 434 patterns. The used encoder was the

Microsoft reference software for MPEG-4 [20].

The average bandwidth per frame pattern can be calculated as follows: AF de-

notes the set of all available frames and numFrm(AF) denotes the number of frames

in the given set. All frames fi are summed up and divided by the number of patterns

numPat.

avgPatSize =

∑numFrm(AF)
i=1 size(fi)

numPat

Each pattern consists of fps number of frames, and each frame fi within a pattern

pj has a different size. Seen over all patterns, each frame at a certain position i within

a pattern, has an average size over all patterns:

avgFrmSizei =

∑numPat−1
p=0 size(fp∗fps+i)

numPat
, ∀i = 1 . . . fps

Figure 4.2 shows, how much the average frame size at each position i within a

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 48

pattern contributes in percent to the average frame pattern bandwidth. Analysis

has been done for fixed patterns of one B-frame between each P-frame (P
1B→ P),

two (P
2B→ P) and four (P

4B→ P). To denote the alternating number of B-frames

in the following figures, the abbreviation xBbP is used instead of P
xB→ P , where

x = {1, 2, 4}.

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P
er

ce
nt

 o
f p

at
te

rn
 s

iz
e

Frame number

1 BbP
2 BbP
4 BbP

Figure 4.2: P-frames grow proportionally to their distance to each other

The first frame is always an I-frame, which accounts for 12% of one pattern. Before

analysing in-between B-frames, we concentrate on the larger-sized P-frames, which

grow significantly with increasing distance between each other.

With one B-frame between each P-frame (P
1B→ P), we have 14 P-frames, each

using about 4.5% of the full pattern size. If two B-frames (P
2B→ P) are chosen, the

number of P-frames is reduced to nine and their proportionate size grows to over 5.5%

each, since their distance to each other increases. If we use four B-frames (P
4B→ P),

there are only five P-frames left, with proportionate sizes of about 7% each.

Understanding the drawback of reference distance, it further becomes clear that

in all cases where P
xB→ P , and x ≥ 3, the innermost B-frames are the farthest away

to their reference frames and hereby also become recognizably large. This is nicely

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 49

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P
er

ce
nt

 o
f p

at
te

rn
 s

iz
e

Frame number

1 BbP
2 BbP
4 BbP

Figure 4.3: Innermost B-frames need more bytes to code deltas

shown in Figure 4.3, where only the B-frames are drawn. Note that I- and P-frames

are blended out by only showing them as negative values. For absolute comparison,

use Figure 4.2.

For the P
4B→ P case, the frames 2, 3, 4, 5 are coded as B-frames, where the two

innermost B-frames 3, 4 have increased sizes. This symptom is nonexistent for the

P
2B→ P case, since both B-frames have the same distance to both of their references

(either their left or right reference frame is closer). The same holds for the single B-

frame in P
1B→ P . So we come to the conclusion, that it is not useful to code too many

B-frames between P-frames. Available standard codecs default to use a maximum of

P
2B→ P , which, under the above given circumstances, seems reasonable. Still, if we

want to gain a maximum of scalability, we shall accept the consequences and code

our video with a higher number of in-between B-frames P
xB→ P , and x ≥ 3.

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 50

4.4 Quantization Steps for Different Frame Types

In this section, we want to examine the coherence of quantization, filesize, and the

number of B-frames between P-frames. We always compare three streams of “Big

Show Both, CIF” with each other, with P
1B→ P , P

2B→ P and P
4B→ P . Since P

2B→ P

is qualitatively always somewhere in between the other two, we silently ignore it in

the following descriptions, though it is still plotted in the comparing figures.

When using MPEG-4 or other DCT (Descrete Cosine Transformation) based video

encoding algorithms, each pixel block is transformed into the frequency domain. A

calculated coefficient is assigned to each frequency. This coefficient can be mapped to

a limited range of integer values (for MPEG-4 it is 0 – 255). The range of the avail-

able integer values can further be reduced by the level of quantization. Quantization

is defined in levels between quant = 1 (no loss at all) and quant = 32 (heavy degra-

dation). With an increasing quantization value, a reduction of possible mappings

from the original coefficient to the available pool of integers is achieved. The more

coarse-grained this mapping gets, the lower the decoded quality will be, but this also

severely reduces bandwidth. Allthough a high quantization level decreases a frame’s

data size, each frame still has some header overhead and codes the detected motion

vectors. Still, quantization is offering the highest gains in bandwidth reduction.

If we keep the I-frame and P-frame quantization fixed and only change the B-frame

quantization, overall bandwidth requirements substantially decrease with increasing

quantization of B-frames and the number of available B-frames. Keeping I- and P-

frames untouched offers the advantage that we can rely on high quality reference

frames. Figures 4.4, 4.5 and 4.6 show changing B-frame quantization with fixed I-

and P-quantization of 16, 12 and 8 respectively.

For a fixed I- and P-quantization of 16, Figure 4.4(a) shows that if the stream

with P
4B→ P is exposed to B-frame quantization between 16 and 32, it drops fastest

in quality, since more frames (there are 24 B-frames) suffer from quantization. But

even with increasing B-frame quantization, the so-called base layer with all statically

quantized I- and P-frames stays at the same size (see Figure 4.4(b)). Note, that

at very high quantization levels, in comparison to the previous quantization level,

there is not much more data reduction possible, so all quantization curves represent

a logarithmic shape. The remaining distance between the overall bandwidth and

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 51

the corresponding baselayer is related to the available number of B-frames and their

coded motion vector parts and headers.

With a low quantization of B-frames (eg quant = 16), the bandwidth requirements

are the highest for the P
4B→ P stream. Still, the P

1B→ P stream rapidly converges

to the minimally achievable B-frame size. The P
4B→ P stream has more B-frames, so

there is more overall bandwidth reduction possible by higher B-frame quantization.

From this analysis, it becomes obvious that the more B-frames exist, the more

bandwidth can be reduced by dropping them. This bandwidth reduction is called

bandwidth scalability, which defines the ability to reduce the needed bandwidth of a

video by deleting B-frames. This only introduces a lower frame rate (and hereby chop-

piness in displaying) but has no negative inpact on decoding, as would be introduced

by dropping I- or P-frames.

Figure 4.4(c) shows the possible bandwidth reduction in percent if all available

B-frames are dropped. The figure points out that P
4B→ P hereby offers the highest

bandwidth scalability, even though with increasing B-frame quantization the band-

width scalability is decreasing for all three streams, since B-frames are coded with

fewer bits.

4.4.1 Absolute Versus Relative Gain of Scalability

As described in Section 4.3, the more B-frames are used, the higher all distances

to reference frames become. So increasing the bandwidth scalability by B-frames

also leads to an overall increased bandwidth. If we want to compare the bandwidth

scalability of P
4B→ P and P

1B→ P fairly, we have to first adjust the P
4B→ P to

lower bandwidth needs by reducing the needed bandwidth of P
4B→ P down to the

bandwidth of P
1B→ P by deleting some frames. This not only reduces the frame

rate, but also reduces the overall bandwidth scalability. Figure 4.4(d) shows, that the

P
4B→ P stream at higher quality B-Frames (lower quantizations) has to drop more

B-frames to reach the P
1B→ P bandwidth. At a certain point of quantization, the

P
4B→ P B-frames are getting small enough so that no dropping is needed anymore

and P
1B→ P is automatically reached. This fact is also shown in Figure 4.4(b) at

the streams’ crossing points, where the P
1B→ P stream’s B-frames fastly converge to

their minimal size and the P
4B→ P stream is far from converging since it has more

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 52

B-frames.

Because of the high number of B-frames, P
4B→ P keeps its relative scalability

(after adjusting the overall bandwidth to P
1B→ P), even at high quantizations. Figure

4.4(e) shows, that for a low B-quantization, P
4B→ P has to drop many B-frames, so

the relative bandwidth scalability is “only” 55% with a severe frame loss of about 5

frames per second (see Figure 4.4(d)), instead of the absolute bandwidth scalability

of close to 70%. The higher the quantization, the more frames can be displayed (at

the same bandwidth as P
1B→ P), so the absolute and relative scalability come close

together.

4.4.2 Optimum Encoder Settings

Concluding on the previous analysis, in terms of scalability and quality, we search

the optimum stream at P
4B→ P with I- and P-quantization set to 16, by setting

the B-quantization to 25. This gives the same bandwidth as P
1B→ P , also with a

B-quantization of 25. So with a bandwidth of about 420 kpbs, it offers nearly 56%

absolute bandwidth scalability and 24 droppable B-frames. In comparison to that, the

P
1B→ P stream offers only 24% absolute bandwidth scalability and 15 droppable B-

frames at the same bandwidth. Still, in all the consideration we ignore a qualitative

reduction of −0.44 dB PSNR from a maximum of 28.38 dB, but this reduction is

invisible even to experts.

Figure 4.5 shows the same comparisons as Figure 4.4, but with a better I- and P-

quantization set to 12. Here, the PSNR quality is in higher ranges, but also the base

layer of I- and P-frames is larger. Here, the optimal P
4B→ P stream can be found with

a B-quantization set to 16, wich offers 59% absolute bandwidth scalability and 24 B-

frames at 615 kbps. At the same bandwidth, P
1B→ P only offers 25.5% scalability and

15 B-frames with an ignorable increase of quality by +0.38 dB PSNR of a maximum

of 29.81 dB.

At an even better I- and P-quantization set to 8, all subfigures in Figure 4.6 show

similar results but with shifted PSNR quality ranges. The streams already intersect

at a B-quantization set to 10 with a bandwidth of 1064 kbps. Increased absolute

bandwidth scalability of 62% with 24 droppable B-frames in P
4B→ P can be exploited

in comparison to only 24% scalability with 15 B-frames for P
1B→ P . This again costs

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 53

about −0.37 dB PSNR of a maximum of 31.95 dB.

This leads to three streams with P
4B→ P and fixed I- and P-quantizations of 16,

12, and 8 (see Table 4.2). All streams offer a maximum dropping of 24 B-frames

(from 30 fps down to 6 fps) with an approx. absolute bandwidth scalability of at

least 55%. So to fit varying bandwidth capacities, it is possible to adapt each stream

to its maximum and then switch to the next stream. Advantages and caveats of

stream switching will be discussed in detail in Chapter 5.

kbps I-/P-quant B-quant absolute bandwidth scalability overall PSNR [dB]

420 16 25 55.9% 27.94
615 12 16 58.6% 29.43
1064 8 10 62.2% 31.58

Table 4.2: Optimum streams with P
4B→ P and I-/P-quantizations 16, 12, and 8

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 54

 27.6

 27.8

 28

 28.2

 28.4

 28.6

 28.8

 10 15 20 25 30

P
S

N
R

 in
 d

B

B-Quantization (fixed IP-Quant: ip16)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(a) Quality reduction by increasing B-frame
quantization

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 10 15 20 25 30

B
an

dw
id

th
 in

 k
bp

s
B-Quantization (fixed IP-Quant: ip16)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

1 BbP -> 15 IP frames (BL)
2 BbP -> 10 IP frames (BL)
4 BbP -> 6 IP frames (BL)

(b) Bandwidth reduction by increasing B-
frame quantization

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 10 15 20 25 30

P
os

si
bl

e
re

du
ct

io
n

in
 p

er
ce

nt

B-Quantization (fixed IP-Quant: ip16)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(c) Absolute overall bandwidth scalability

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 10 15 20 25 30

F
ra

m
es

 p
er

 s
ec

on
d

B-Quantization (fixed IP-Quant: ip16)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(d) Needed framerate reduction to reach

P
1B→ P bandwidth

 20

 25

 30

 35

 40

 45

 50

 55

 60

 10 15 20 25 30

P
os

si
bl

e
re

du
ct

io
n

in
 p

er
ce

nt

B-Quantization (fixed IP-Quant: ip16)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(e) Relative overall bandwidth scalability,

adjusted to P
1B→ P

Figure 4.4: Dynamic B-frame quantization with static I-/P-quantization 16

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 55

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 29.6

 29.8

 30

 30.2

 10 15 20 25 30

P
S

N
R

 in
 d

B

B-Quantization (fixed IP-Quant: ip12)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(a) Quality reduction by increasing B-frame
quantization

 200

 300

 400

 500

 600

 700

 800

 900

 10 15 20 25 30

B
an

dw
id

th
 in

 k
bp

s

B-Quantization (fixed IP-Quant: ip12)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

1 BbP -> 15 IP frames (BL)
2 BbP -> 10 IP frames (BL)
4 BbP -> 6 IP frames (BL)

(b) Bandwidth reduction by increasing B-
frame quantization

 10

 20

 30

 40

 50

 60

 70

 10 15 20 25 30

P
os

si
bl

e
re

du
ct

io
n

in
 p

er
ce

nt

B-Quantization (fixed IP-Quant: ip12)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(c) Absolute overall bandwidth scalability

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 10 15 20 25 30

F
ra

m
es

 p
er

 s
ec

on
d

B-Quantization (fixed IP-Quant: ip12)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(d) Needed framerate reduction to reach

P
1B→ P bandwidth

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 10 15 20 25 30

P
os

si
bl

e
re

du
ct

io
n

in
 p

er
ce

nt

B-Quantization (fixed IP-Quant: ip12)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(e) Relative overall bandwidth scalability,

adjusted to P
1B→ P

Figure 4.5: Dynamic B-frame quantization with static I-/P-quantization 12

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 56

 29

 29.5

 30

 30.5

 31

 31.5

 32

 32.5

 10 15 20 25 30

P
S

N
R

 in
 d

B

B-Quantization (fixed IP-Quant: ip08)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(a) Quality reduction by increasing B-frame
quantization

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 10 15 20 25 30

B
an

dw
id

th
 in

 k
bp

s
B-Quantization (fixed IP-Quant: ip08)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

1 BbP -> 15 IP frames (BL)
2 BbP -> 10 IP frames (BL)
4 BbP -> 6 IP frames (BL)

(b) Bandwidth reduction by increasing B-
frame quantization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30

P
os

si
bl

e
re

du
ct

io
n

in
 p

er
ce

nt

B-Quantization (fixed IP-Quant: ip08)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(c) Absolute overall bandwidth scalability

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10 15 20 25 30

F
ra

m
es

 p
er

 s
ec

on
d

B-Quantization (fixed IP-Quant: ip08)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(d) Needed framerate reduction to reach

P
1B→ P bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30

P
os

si
bl

e
re

du
ct

io
n

in
 p

er
ce

nt

B-Quantization (fixed IP-Quant: ip08)

1 BbP -> 15 B-frames
2 BbP -> 20 B-frames
4 BbP -> 24 B-frames

(e) Relative overall bandwidth scalability,

adjusted to P
1B→ P

Figure 4.6: Dynamic B-frame quantization with static I-/P-quantization 8

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 57

4.5 Prioritization of B-Frames

If bandwidth or terminal constraints force the server to deliver a lower frame rate,

then – given a sufficient number of B-frames – it is the sender’s decision which B-

frames to drop. In the following, we will always assume a “semi-intelligent” server,

which is capable of distinguishing between I-, P- and B-frames.

The following terms will be used in the following:

• streamBW is the bandwidth which should be streamed out, so it is assumed

to be fixed to the average bandwidth of the video stream (or might be further

refined and determined according to Chapter 2). In the following formula, AF

denotes the set of all available frames in the stream (AF = All Frames). fi

iteratively references each of the available frames in AF .

streamBW = avgBW =

∑numFrm(AF)
i=1 size(fi)

numFrm(AF)
∗ fps, ∀fi ∈ AF

• netBW is the really available bandwidth, to which each video second’s bitsize

(V secBS) has to be adjusted, so that the overall video fits through the net-

work under those hardened network constraints. In the following formula, DF

denotes the set of all dropped frames from the stream (DF = Dropped Frames).

netBW = streamBW−
∑numFrm(DF)

j=1 size(fj)

numFrm(DF)
∗fps, streamBW ≥ netBW,∀fj ∈ DF

• The amount of data reduction determined by the lower netBW in comparison

to the full streamBW within one V secBS is described by a percentage value

stored in the dropRate, which is defined as follows:

dropRate = 100− netBW

streamBW/100

• In the following discussions, an inverse value of the dropRate is used to describe

the amount of data which is not dropped, but which is kept and finally sent

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 58

out by the server. By that, this keepRate is the percentage of still available

streamBW in V secBS after applying the necessary adaptation, which leads to

netBW , so it is defined as

keepRate =
netBW

streamBW/100

4.5.1 “Bad” Prioritizations

A rather “unintelligent” server will stream out netBW and then realizes, that, after

sending keepRate percent of the streamBW , no more data can be sent out for this

V sec. So the still outstanding B-frames of this V sec (denoted as dropRate percent

of the streamBW) are dropped. A possibly resulting frame pattern for a V sec with

30 frames might then look like this: IBBBBPBBBBPBBBBPBB--P----P----, where the

dashes (-) denote the dropped frames. So the applied adaptation is non-uniformly

distributed in the frame pattern. This obviously gives extremely choppy results, since

the human eye and brain are trying to track the smooth motion of objects [71], and

are therefore highly irritated.

The choppiness can be reduced, maybe even avoided by distributing the missing

frames over the whole V sec [24]. To identify which frame should be dropped, we have

to introduce priority values for each B-frame. Note, that this implies algorithmical

effort, since we have to tag each frame either a priori, which means according to a hint

file, or directly within the sending routine. Assuming, that each frame already has

its priority stored, the code fragment in Table 4.3 shows how the streamout routine

easily decides, if a certain frame’s priority fits into the bounds of netBW . This bound

is defined as maxPrio, which is simply a mapping of the keepRate percentage on the

possible frame priority range from 1 . . . fps for one V sec, where fps is the static

number of frames per second all over the video.

Simply assigning random numbers as priorities would render impossible a good

evaluation of the quality of the chosen priority values, which might randomly be

equal or very similar to the above mentioned, unattractive non-uniformly distributed

adaptation pattern. Further, when using random priorities, we would have to make

sure that no number is used twice within one V sec, because then we would wrongly

drop too many frames in this V sec.

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 59

maxPrio = fps * keepRate/100;

while (! eof(stream)) {

frm = getNextFrameFromStream();

if (frm.type == B_VOP) {

if (frm.prio < maxPrio)

send(frm);

else

drop(frm);

}

}

Table 4.3: Temporal adaptation in case of prioritized frames

For the following, we use B-frame prioritization and dropping only based on deci-

sions of the server-side, hinted by client feedback on network behaviour. To further

gain more immediate reaction to network problems, this priority-based dropping can

also happen within the network, on specialized multimedia routers [72] [73]. Since

those routers unfortunately are not yet widely available on normal IP networks, we

refrain to use them in our measurements. Still, the availability and use of such

technology will even more increase the value of good prioritization algorithms under

certain circumstances [74].

4.5.2 Timely Uniform Distribution

If dropped B-frames would be uniformly distributed within the V sec, the resulting

frame pattern with frame drops should look like I-B-BP-B-BP-B-BP-B-BP-B-BP-B-B.

This is called timely uniform distribution.

In Appendix A.1, we will present an algorithm, which sets up a table with frame

priorities. Basically, it implements a recursive depth-search, which is limited to a cer-

tain depth. At each depth, left and right traversals are started, which sets ascending

priority numbers to the alternating tree halves.

The following example in Table 4.4 shows the needed three depths for a pattern

size of seven frames, and how the new priorities are uniformly assigned for each depth.

In the first level, no priorities are assigned to the table of frames yet, which is denoted

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 60

as double dots (..). Only the center frame gets the highest number, so this frame will

be dropped first, when priority-based adaptation is necessary. After the algorithm

has worked down to the third level, all frames have assigned priorities, which are

perfectly timely uniform distributed.

For further illustration, Table 4.5 shows a pattern size of 15 frames, with a four-

step priority assignment, which also comes up with a timely uniform distributed

prioritization scheme on level four.

1: ..-..-..- 7-..-..-..
2: ..- 6-..- 7-..- 5-..
3: 4- 6- 2- 7- 1- 5- 3

Table 4.4: Building tree for timely uniform distributed prioritization for 7 frames

1: ..-..-..-..-..-..-..-15-..-..-..-..-..-..-..-
2: ..-..-..-14-..-..-..-15-..-..-..-13-..-..-..-
3: ..-12-..-14-..-10-..-15-..- 9-..-13-..-11-..-
4: 8-12- 6-14- 4-10- 2-15- 1- 9- 3-13- 5-11- 7-

Table 4.5: Building tree for timely uniform distributed prioritization for 15 frames

After the table is filled up and stored, the priority is looked up in this table for the

current frame’s position. This priority can be applied to each frame, shortly before it

will be sent out or dropped, without any dependencies to prior or future frames (see

Table 4.6). The decision of dropping is taken, if the current frame’s priority exceeds

a maximum priority level which was derived from the keepRate.

Table 4.7 shows different keepRates and the resulting number of dropped frames

denoted as double dots (..). The lower the keepRate, the more frames are dropped

and less frames are “kept” for sending, so a 100% keepRate means no adaptation,

a 80% keepRate in this example means the sendout of 20 frames out of a 25 fps

pattern. The patterns nicely demonstrate, that the remaining frames are always

uniformly distributed at every level of adaptation.

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 61

currentFrameNo = 0;

maxPrio = fps * keepRate/100;

while (! eof(stream)) {

frm = getNextFrameFromStream();

if (frm.type == B_VOP) {

frm.prio = prioTable[currentFrameNo % fps];

} else // I- or P-frame

frm.prio = 0;

if (frm.prio < maxPrio)

send(frm);

else

drop(frm);

currentFrameNo++;

}

Table 4.6: Efficient priority assignment and adaptation of frames

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 62

keepRate resulting frame pattern
--
100%: 10-18- 8-22-16- 6-24-14- 4-20-12- 2-25-11- 1-19-13- 3-23-15- 5-21- 7-17- 9-
96%: 10-18- 8-22-16- 6-24-14- 4-20-12- 2-..-11- 1-19-13- 3-23-15- 5-21- 7-17- 9-
92%: 10-18- 8-22-16- 6-..-14- 4-20-12- 2-..-11- 1-19-13- 3-23-15- 5-21- 7-17- 9-
88%: 10-18- 8-22-16- 6-..-14- 4-20-12- 2-..-11- 1-19-13- 3-..-15- 5-21- 7-17- 9-
84%: 10-18- 8-..-16- 6-..-14- 4-20-12- 2-..-11- 1-19-13- 3-..-15- 5-21- 7-17- 9-
80%: 10-18- 8-..-16- 6-..-14- 4-20-12- 2-..-11- 1-19-13- 3-..-15- 5-..- 7-17- 9-
76%: 10-18- 8-..-16- 6-..-14- 4-..-12- 2-..-11- 1-19-13- 3-..-15- 5-..- 7-17- 9-
72%: 10-18- 8-..-16- 6-..-14- 4-..-12- 2-..-11- 1-..-13- 3-..-15- 5-..- 7-17- 9-
68%: 10-..- 8-..-16- 6-..-14- 4-..-12- 2-..-11- 1-..-13- 3-..-15- 5-..- 7-17- 9-
64%: 10-..- 8-..-16- 6-..-14- 4-..-12- 2-..-11- 1-..-13- 3-..-15- 5-..- 7-..- 9-
60%: 10-..- 8-..-..- 6-..-14- 4-..-12- 2-..-11- 1-..-13- 3-..-15- 5-..- 7-..- 9-
56%: 10-..- 8-..-..- 6-..-14- 4-..-12- 2-..-11- 1-..-13- 3-..-..- 5-..- 7-..- 9-
52%: 10-..- 8-..-..- 6-..-..- 4-..-12- 2-..-11- 1-..-13- 3-..-..- 5-..- 7-..- 9-
48%: 10-..- 8-..-..- 6-..-..- 4-..-12- 2-..-11- 1-..-..- 3-..-..- 5-..- 7-..- 9-
44%: 10-..- 8-..-..- 6-..-..- 4-..-..- 2-..-11- 1-..-..- 3-..-..- 5-..- 7-..- 9-
40%: 10-..- 8-..-..- 6-..-..- 4-..-..- 2-..-..- 1-..-..- 3-..-..- 5-..- 7-..- 9-
36%: ..-..- 8-..-..- 6-..-..- 4-..-..- 2-..-..- 1-..-..- 3-..-..- 5-..- 7-..- 9-
32%: ..-..- 8-..-..- 6-..-..- 4-..-..- 2-..-..- 1-..-..- 3-..-..- 5-..- 7-..-..-
28%: ..-..-..-..-..- 6-..-..- 4-..-..- 2-..-..- 1-..-..- 3-..-..- 5-..- 7-..-..-
24%: ..-..-..-..-..- 6-..-..- 4-..-..- 2-..-..- 1-..-..- 3-..-..- 5-..-..-..-..-
20%: ..-..-..-..-..-..-..-..- 4-..-..- 2-..-..- 1-..-..- 3-..-..- 5-..-..-..-..-
16%: ..-..-..-..-..-..-..-..- 4-..-..- 2-..-..- 1-..-..- 3-..-..-..-..-..-..-..-
12%: ..-..-..-..-..-..-..-..-..-..-..- 2-..-..- 1-..-..- 3-..-..-..-..-..-..-..-
8%: ..-..-..-..-..-..-..-..-..-..-..- 2-..-..- 1-..-..-..-..-..-..-..-..-..-..-
4%: ..-..-..-..-..-..-..-..-..-..-..-..-..-..- 1-..-..-..-..-..-..-..-..-..-..-
0%: ..-

Table 4.7: Prioritized frame pattern exposed to increasing level of adaptation

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 63

Varying Frame Sizes Note, that the simple algorithms in Table 4.3 and 4.6 assume

frames which are of equal byte sizes. Doing so, a calculated maximum priority level

(maxPrio) according to a certain keepRate will lead to a bandwidth reduction from

streamBW down to netBW for each V sec. For the following measurements, a more

sophisticated algorithm is used, which also addresses the problems of different frame

sizes.

This adaptation process introduces buffer requirements for at least one V sec. This

V sec has to be adapted to fit the keepRate, and then streamed out with the adjusted

priority level, where some frames are dropped.

As an example, in Figure 4.7 a streamBW of 232 kbps is presumed, but the

measured network bandwidth is only 198 kbps. The available netBW defines a

keepRate = 85%, so we have to reduce data by 15%. We first select all frames

from V sec34 to fill the streamBW and then sort by priorities. Finally, we chop off

the highest priority numbers until we can satisfy the netBW .

Figure 4.7: Prioritization within one V sec with varying frame sizes

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 64

4.5.3 Varying Motion Energy within a Pattern

Though timely uniform distribution performs well on the average over a full stream,

the following subsections will describe more sophisticated methods of gaining priority

values which even more reflect the actually displayed video content.

If the motion of a certain V sec is not uniformly distributed, but the previously

discussed “timely uniform distribution” algorithm prioritizes the frames in an evenly

distributed manner, the resulting priorities are not optimal in terms of choppiness.

So if the first half of a certain V sec shows a high motion scene and then switches

to a nearly still image for the remaining half second, we would prefer to give higher

priorities to the first half, which would result in a smoother presentation of the high

motion and unchanging quality for the still scene, since it does obviously not matter,

if a still image is coded using one or 15 frames.

Unfortunately, there is no obvious and reliable way of measuring exactly this mo-

tion, that is important for a user. This would mean to extract the visual object of

interest within the video and then measure its motion, which also leads to transfor-

mation of the visible object shape (think of a person running and turning).

In the compressed domain, motion vectors on macroblocks stored in each B-frame,

can be used to come up with motion models. Liu et al. calculated those motion

models, which then were transformed to priority values and evaluated by subjective

tests [75]. Results have shown, that the motion models and related priorities provide

high correlation with the human perceived motion energy.

Similar work on evaluating the importance of motion vectors has been done in [76].

But here, a frame’s priority is also increased by the number of slice level references,

which means, on an MPEG-4 macroblock level, how many other macroblocks are

referencing this one for prediction. The more important macroblocks a frame owns,

the higher its priority will be.

4.5.4 Scene Cuts and Key Frames

Even if motion is uniformly distributed over a V sec, there might occur hard scene

cuts, which might be detected automatically or are described using MPEG-7 tempo-

ral regions. It is important, not to drop those frames which are close to the scene

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 65

cut, since they might offer important visual information for the user or for audio

synchronization. Think of a car explosion, accompanied with rumbling thunder, then

it is expected by the user, to see the car going up into smoke, immediately when

the sound is audible. If we would drop those frames, the intact car would still stand

around, when loud explosion sounds are played.

The prior scenario could be detected but also hinted by an editor. Key frames of

certain scenes are very valuable and should not be arbitrarily dropped. They should

be treated like reference frames1.

4.5.5 PSNR-Based Quality Detection of Drop Patterns

The most exact detection of frame importance can be conducted in the uncompressed

domain, based on each frame’s PSNR value. To be more specific, we measure the loss

of PSNR quality all over a frame, if a certain frame is dropped and the preceeding

frame has to be replayed again. This means that, if a frame is dropped, the old

frame keeps being displayed, and therefore causes a loss of information, quality and

motion. This is compared to the original frame at this time point and gives a severely

decreased PSNR value, which is then used for prioritization.

Table 4.8 demonstrates this behavior on randomly dropped B-frames, where eg.

frame number 3 was dropped, so frame number 2 was replayed, which resulted in

a quality reduction from 33.984 dB down to 23.984 dB. Unfortunately, the further

frames 4 and 5 were also dropped, which resulted in replaying frame 2 even longer.

PSNR values dropped from 34.191 dB to 19.191 dB, and from 34.432 dB down to

14.432 dB respectively. The quality loss is growing with each frame, since the error

is propagated due to continuing motion in the video. Find a more formal definition

of quality estimation in [21].

Quality Controlled Temporal Video Adaptation (QCTVA) [77] generates

all possible combinations of dropping patterns and stores them in a graph, the so

called modification lattice, which starts at the full frame pattern and then, for each

1Eg., the movie Fight Club contains scenes of the schizophrenic leading character, where his true
identity is revealed and shown for a small fraction of a second. This fact is well known to many fans
of this DVD video.

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 66

No Type PSNR [dB] No Type PSNR [dB]

1 I 35.342 1 I 35.342
2 B 33.993 2 B 33.993
3 B 33.984 2 B 23.984
4 B 34.191 2 B 19.191
5 B 34.032 2 B 14.032
6 P 35.561 6 P 35.561
7 B 34.432 6 P 14.432
8 B 34.331 8 B 34.331
9 B 34.531 9 B 34.531

10 B 34.667 9 B 14.667
11 P 35.123 11 P 35.123
Original quality 34.562 After dropping 26.835

Table 4.8: PSNR estimation in case of randomly dropped B-frames

level, simulates the dropping of one B-frame (see Figure 4.8). For all resulting nodes,

where one B-frame was dropped, further frame dropping is applied, so again all pos-

sible combinations are generated.

Since multiple nodes, after dropping another B-frame, might result in the same

subnode, there do exist subnodes, which can be reached from more than one parent.

This lattice is then traversed in a best first manner for the highest quality result

at each horizontal level. So, starting at the top-level node of the unadapted frame

pattern, the best performing subnode of the next level is chosen. Best performing

is simply defined by the highest PSNR value in this level. For the example pattern

IBBPBB, Figure 4.9 shows how QCTVA examines each level in a best first expansion

manner.

Since every level always symbolizes one addtional dropped B-frame, priority levels

are assigned to those frames according to the level, where they where dropped. Pri-

orities are counted down from the height of the lattice, which is equal to the number

of B-frames in the pattern. I- and P-frames always get the priority value zero (0),

which denotes their extremely high importance. In Figure 4.9, the resulting priorities

would be 0-4-1-0-2-3. Zero (0) is assigned for the I-frame, then the lowest priority

(4) is assigned to the first B-frame, since in the first level, the B-frame at position 2

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 67

IBBPBB
Q=35.3546

I-BPBB
Q=34.329

IB-PBB
Q=33.9833

IBBP-B
Q=34.0887

IBBPB-
Q=34.2875

I--PBB
Q=32.0773

I-BP-B
Q=32.7631

I-BPB-
Q=32.962

I--P-B
Q=30.8114

I--PB-
Q=31.0103

I--P--
Q=29.0496

I-BP--
Q=31.8014

IB-P-B
Q=32.7174

IB-PB-
Q=32.9162

IB-P--
Q=31.9556

IBBP--
Q=32.3269

Figure 4.8: Modification lattice including quality measures

in the pattern is dropped first.

The next level is only entered via a direct link, so QCTVA might marginally miss

the next optimal modification. For every level, the dropped frame is identified from

the actual pattern and the next priority value is assigned accordingly.

According to Figure 4.9, on level three, the technique misses the absolute optimum,

since the decision in the upper level offers no direct link. Still, those dependencies

between parents and subnodes are necessary to provide unique priorities and further

severely speeds up the path finding process, since for best first expansion, only the

directly linked subnodes have to be expanded. Please also note, that on a regular best

effort network like the Internet, adaptation needs are expected to be within 10 – 30%,

or other means of adaptation like stream switching have to be addressed. Further,

if more than 30% adaptation has to be performed on a 25fps stream with use of

B-frame dropping, this will result in unacceptable frame rates below 15 frames.

For simple adaptation needs, only the upper levels of the lattice have to be tra-

versed. But propagation errors because of missing links between an already chosen

parent node and the next optimal subnode will only occur at lower levels (if at all)

[21].

Since the QCTVA algorithm can easily be changed from best first expansion (BFE)

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 68

IBBPBB
Q=35.3546

I-BPBB
Q=34.329

IB-PBB
Q=33.9833

IBBP-B
Q=34.0887

IBBPB-
Q=34.2875

I--PBB
Q=32.0773

I-BP-B
Q=32.7631

I-BPB-
Q=32.962

I--P-B
Q=30.8114

I--PB-
Q=31.0103

I--P--
Q=29.0496

I-BP--
Q=31.8014

IB-P-B
Q=32.7174

IB-PB-
Q=32.9162

IB-P--
Q=31.9556

IBBP--
Q=32.3269

Figure 4.9: QCTVA top-down searches linked patterns with highest quality

to worst first expansion (WFE), also the qualitatively worst priorities can be calcu-

lated. This QCTVA WFE will be used for further comparisons.

4.6 Evaluation of the Different B-Frame Prioriti-

zation Schemes

The following PSNR comparisons consider the QCTVA BFE (best first expansion),

timely uniform distribution and QCTVA WFE (worst first expansion) prioritization

algorithms. Random and motion-based prioritization are assumed to lie in between

BFE and WFE, which obviously denote the highest and lowest qualitative limits.

Hand-annotated metadata prioritization is out of scope for this comparison, since

eg. for a key frame, importance is not measurable via PSNR. If annotation is per-

formed well, it would always outperform any other algorithm, but hand-annotating

videos is very time consuming so it is normally not feasible in this detail.

The tests were conducted on MPEG-4 CIF reference streams defined by the

MPEG consortium (see Table 4.9). All video sequences were coded with an I- and

P-quantization of 16 and a B-quantization of 28 at a frame rate of 30 fps and a fixed

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 69

frame pattern with P
4B→ P , using the Microsoft MPEG-4 reference software [20].

Note that, depending on the video, more or less motion has to be coded, even though

fixed quantization values for all frames are used. This results in severely different

bandwidth requirements for the test sequences to reach about similar average PSNR

values.

sequence frames overall
PSNR
[dB]

kbps
100%

kbps
85%

kbps
70%

description

ice 236 32.53 243 207 170 about 15 people are ice skating, each
person moves at different speed

football 256 29.53 591 502 414 football game with still camera on
game play, then a jerky high motion
camera pan follows a thrown ball

city 296 29.49 241 205 169 smooth and slow camera pan over
city skyline, recorded from an air-
plane

Table 4.9: MPEG-4 reference streams used for B-frame prioritization comparison

The video sequences were streamed via RTP/UDP with retransmissions enabled

[78] and the keepRate (simulating the available network bandwidth) was set to 85%

and 70% of the average video bitrate, respectively. This means a reduction of each

video second’s bitsize (V secBS) by either 15% or 30%.

An average PSNR calculation across all frames (either dropped or kept) would

lead to minimal differences between the proposed algorithms, since frame droppings

are rather seldom and distributed over the video. So Figure 4.10 only shows the

quality reduction averaged over all really dropped frames in comparison to the original

quality. Focussing on only the dropped frames reflects the human perception better,

since humans do not watch a video as an “average”, but are distracted by each hick-up

or short quality loss.

As expected, QCTVA BFE and WFE sketches the high and low limits and QCTVA

BFE also always outperforms timely uniform distribution for all tested video se-

quences. For a keepRate of 85%, QCTVA BFE performs best with highly optimal

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 70

results for the upper layers of the modification lattice. Still, the more adaptation is

needed (eg. keepRate = 70% or lower), the more QCTVA BFE or any other prior-

itization scheme converge to the base layer of I- and P-frames and therefore deliver

even more similar results.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

ice 85% ice 70% football 85% football 70% city 85% city 70%

av
g.

 P
S

N
R

 lo
ss

 in
 d

B

MPEG Conformance Videos in CIF@30fps with 4 B-between-P

QCTVA BFE
uniform timely distribution

QCTVA WFE (worst)

Figure 4.10: Quality reduction on dropped frames for keepRate 85% and 70%

For the test sequence ice with a keepRate of 85%, timely uniform distribution

is exactly in between QCTVA BFE and QCTVA WFE. The video shows different

motion patterns within a frame for each person sliding over the ice. Since PSNR

changes are inherent all over the video, but not directly related to frame-per-frame

motion, a timely uniform distribution performs reasonably, though not perfectly.

For the football scene, QCTVA BFE outperforms timely uniform distribution even

more, since the motion is unevenly distributed over the video. First, there is a still

camera on the melee of players. Here, the same rules as for ice apply. But then, all of

a sudden, a player makes a pass and the ball flies all over the field. The camera tries

to follow the ball, which introduces high motion for a short time. QCTVA BFE is

capable to optimize priorities for this fast scene and drops frames at the slow motion

scene. Timely uniform distribution drops frames uniformly over both scenes, which

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 71

causes undesired frame loss also in the fast scene.

For the all-time slow-motion video city, the average PSNR loss is very low for all

three algorithms. Still, since the scene is recorded with a hand camera from within

an airplane, there are some bumpy camera moves. Those are better detected and

prioritized by QCTVA BFE than timely uniform distribution.

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

ice 85% ice 70% football 85% football 70% city 85% city 70%

av
g.

 lo
ss

 o
f f

ra
m

es
 p

er
 s

ec
on

d

MPEG Conformance Videos in CIF@30fps with 4 B-between-P

QCTVA BFE
uniform timely distribution

QCTVA WFE (worst)

Figure 4.11: Varying frame rates for keepRate 85% and 70%

Though the above keepRate is always applied to an average bandwidth and each

pattern is adapted to the same value, it is a well-known fact, that MPEG-4 is more

of a variable bitrate coding scheme than a constant one. So the average bandwidth

does not represent each single V secBS, and is even less apportionate to each frame.

B-frame sizes vary because of varying image differences to their reference frames (eg.

amount of motion between frames) and further by their distance to their reference

frames (see Section 4.3). So whenever different B-frames were chosen for dropping,

they offer a varying proportion of bandwidth scalability.

Figure 4.11 demonstrates, that the frame rate is not directly connected with adap-

tation quality. Note, that the frame size of an important B-frame will be proportion-

ally larger, since it has to code more information.

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 72

Timely uniform distribution is more or less random on frame sizes, since it only

adheres to the mere goal of uniform dropping over time. So it will drop small-sized

but also large-sized frames at will, regardless of their importance. This fact makes it

impossible to relate frame rate with the qualitative results.

QCTVA, in either BFE or WFE manner, selects priorities only based on their

PSNR importance, which ignores frame sizes. QCTVA BFE will always prefer drop-

ping unimportant ones, so it will therefore have to drop more than QCTVA WFE,

because BFE prioritizes important frames, offering higher bandwidth scalability.

QCTVA also ignores such frames that are just blown up because of high reference

distances. Given that such an overly large frame does not offer high PSNR impor-

tance, QCTVA will drop it and accidently gain higher bandwidth scalability, or vice

versa.

To further optimize prioritization results, fast prioritization algorithms have to be

found which try to optimize visual performance in terms of PSNR but also keep in

mind the varying frame sizes and the resulting low frame rates.

4.7 Conclusion and Future Work

The previous section showed the inherent superiority of QCTVA BFE, which is based

on the fact, that QCTVA BFE can choose the high priority frames out of a large pool

of B-frames. So with P
4B→ P and a keepRate of at least 85%, it is just a matter of

computational power to prioritize B-frames for perfect PSNR results.

As discussed in Section 4.3, the number of B-frames increases the needed band-

width to keep a certain PSNR quality or – to keep bandwidth – slightly decreases

quality (see Table 4.10).

As stated above, QCTVA outperforms other prioritization algorithms, only if there

is a large pool of B-frames and effectively only a few have to be dropped. Otherwise,

all algorithms will converge to the baselayer of remaining I- and P-frames.

For a real streaming scenario, we can choose temporal adaptation only for a rather

high keepRate of eg. 70−85%, which gives the best results for QCTVA. If the network

bandwidth falls below those 70%, we should better switch over to another stream at

a lower bandwidth with lower quality but standard frame rate again.

CHAPTER 4. DETAILED ANALYSIS OF TEMPORAL SCALABILITY 73

So if stream switching is possible in the given environment and the switch ranges

are at about 30%, only a maximum of 30% of frame dropping is needed. For this,

we might also take into account timely uniform distribution. Here, timely uniform

distribution could easily be used with a frame pattern of P
1B→ P , since this still gives

enough bandwidth scalability.

kbps pattern I-/P-quant B-quant bandwidth
scalability

droppable
B-frames

overall PSNR [dB]

241 P
1B→ P 16 15 38.2% 15 32.69

243 P
4B→ P 16 28 61.5% 24 31.63

Table 4.10: Comparing sequence ice with P
1B→ P and P

4B→ P at same bandwidth

Exemplarily shown on the conformance stream ice, this change to the P
1B→ P

pattern would immediately increase the quality by +1 dB, so the gains from a P
4B→ P

pattern average quality loss of QCTVA measured as −8.16 dB in comparison with

−8.92 loss for timely uniform distribution are not valid any more, when the full stream

is coded with a +1 dB PSNR and “only” timely uniform distribution is applied (see

Figure 4.10).

Note, that this above average quality loss will still be outperformed on some

unevenly distributed motion scenes, so QCTVA (and the associated overhead) should

not be neglected. The optimum video production would use QCTVA for uneven

motion scenes, where significant quality gains can be expected, especially when coded

with P
4B→ P . For all other scenes, timely uniform distribution with a pattern of

P
1B→ P is sufficient in terms of processing requirements. Using P

1B→ P is further

preferable because of better overall PSNR results at the same bandwidth. Still,

analyzing and preparing a stream for optimum prioritization has to be done off-line

and can be very time-consuming. A good middle course has to be found for each

specific application field.

CHAPTER

5 Stream Switching

5.1 Overview

5.1.1 Limitations of In-Stream Adaptation

Various adaptation methods like frame dropping are applied to compensate fluctua-

tions in the available network bandwidth. Still, all known adaptation methods have

their limit. So eg. dropping more than 50% of all available frames will lead to very

choppy presentation results. This even ignores the fact that enough B-frames ought

to be available, otherwise I- or P-frames will be dropped, which also leads to massive

decoding errors.

These limitations in adaptation range do exist for all available adaptation meth-

ods that work on a certain stream, either by reaching the base layer (so dropping

all available enhancement data) or by reaching an intolerable qualitative result. If

not quality is the limiting factor, then inherent coding overhead for adaptable con-

tent forces codecs to stay within reasonable adaptation ranges. Eg. MPEG-4 Fine

Granular Scalability (FGS), when coded with a very small base layer, suffers of over

2 dB PSNR loss at high bitrates (when using very much of the available enhancement

layer), in comparison to the non-scalable MPEG-4 codec [32].

Further, subjective tests [61] have shown that users prefer eg. a lower resolution

video at better quantization in comparison to a higher resolution video with many

quantization errors, assumed that both streams are coded with the same bandwidth

requirements. Also for lower bandwidths, a reasonable frame rate of at least 15 fps

has to be maintained, choosing a lower resolution or quality in exchange.

CHAPTER 5. STREAM SWITCHING 75

Figure 5.1: Combining adaptation and stream switching

To overcome those limitations and offering better user experience, when the avail-

able network bandwidth falls below or exceeds a certain threshold, the actual stream

should be changed to another one, better fitting the given network situation. This

is common use for modern commercial video streaming systems like RealMedia’s Re-

alPlayer or Microsoft’s MediaPlayer in connection with the appropriate servers. [79]

analyzes the usage and functionality of Real’s stream switching support called Sure-

Stream, where the sender has multiple (statically pre-coded) versions of the same

video content available. A more general view is given in [80], where stream switching

is also discussed between media sources, so a streaming server might completely hand

over the streaming to another (eg. less congested) streaming server, when this server

breaks down or is overloaded.

Figure 5.1 shows a hypothetical changing network bandwidth curve, where streams

are switched accordingly. Further, a more fine-grained in-stream adaptation is ap-

plied, to react further to the inherent bandwidth fluctuations. When bandwidth falls

too much and in-stream adaptation cannot cope with it any more, a new stream has

to be chosen. This approach will be discussed and evaluated in detail in the following

subsections.

Before doing so, we have to outline some requirements for stream switching. Based

on [81], the most important ones are:

CHAPTER 5. STREAM SWITCHING 76

• Minimal receiver perturbation, so the process of switching has to be seamless,

introducing none or minimal disturbance from a player point of view. This

also includes the avoidance of gaps in the media stream caused by missing

packets, undecodable frames because of missing reference frames, or lack of

synchronisation information between multiple video/audio object streams in

the same scene. This requirement enforces special effort in stream switching

environments and excludes a simple (but automated) session teardown followed

by restarting another session, since this would take too much time (round trips)

and would make the switch point very obvious to the user.

• Minimal network perturbation, by avoiding to send redundant data or unnec-

essary retransmissions or forward-error correction (FEC) information (for the

already abandoned stream). When congestion occurs, down-switching has to

be performed immediately and the network has to be disburdened as fast and

as much as possible, to allow all intermediary routers to stabilize their buffers

again. For up-switching, the previous restrictions can be loosened, since addi-

tional network bandwidth is available anyway.

5.1.2 Thin Streams versus Stream Switching

Many investigations have been done into splitting a scalable video into multiple layers

and distributing them in a multicast fashion. Multicast is only good for real-time

video broadcast, meaning that hundreds of clients are watching exactly the same

video second at a time. Then the clients can choose, how many layers their network

connection can cope with, and book the layers up to a certain level [82] [83] [84] [85].

Because of coding overhead and coarse-granularity of layers, stream switching does

outperform the well studied academic approach of thin streams [86] [87]. Further, IP

multicast, although embraced by many researchers, is not everywhere available in

today’s Internet (also because router companies do not offer support, or providers

have turned multicast off in the devices’ default settings). Moreover, multicast is not

useful for supporting video on demand (VoD). Because of these reasons, eg. Real’s

or Microsoft’s servers prefer to stream different versions of a video stream in parallel

(simulcast), which then also might be requested at different points in time, hereby

CHAPTER 5. STREAM SWITCHING 77

offering VoD according to each client’s personal needs.

5.2 Possibilities of Distribution of Functionality

5.2.1 Client vs. Server Initiated Switch

In general, when packet loss is measured, there are two ways of performing stream

switching: either triggered directly by the client or by the server, where according to

the received information, the server decides on the necessary amount of adaptation

or initiates a stream switch.

Initiating (requesting) adaptation and switching at the client would introduce

significant complexity to the client software, knowledge of the available streams, al-

gorithms for detection of the ideal switching time and so on. In the following, we

want to keep the client as simple as possible, so we let the server do all the decision

taking and preparation.

Note that, to enable a client-server streaming environment with server-side stream

switching (and adaptation in general), the available network bandwidth has to be

accurately measured by a rate control system. This system has to hint the server

about packet loss and actual (or even future) network behaviour (see Chapter 6).

5.2.2 Client Transparent vs. Non-Transparent Switching

Stream switching can be conducted using different streams encoded with the same

codec (eg. MPEG-4) but at different bandwidth rates and/or resolutions and/or

frame rates. Since most codecs have a certain bandwidth range where they perform

best, different bandwidth scenarios can require also varying codecs for the different

streams.

So the available streams used for stream switching (further called the switch set)

might vary in different domains, where switching between those domains can happen

without informing the client (client transparent), or the client has to be informed a

priori, to be able to prepare for the new stream (non-client transparent).

• Temporal domain. A streaming video player, when set up with a certain de-

coder like MPEG-4, can cope with a dynamically changing frame rate (including

CHAPTER 5. STREAM SWITCHING 78

changing frame patterns but also frame loss), as long as frame dependencies are

staying intact. For this reason, the server can send another stream of the same

codec but at a different frame rate, without breaking the decodability at the

client side. So this switching is client transparent, and no further signalling is

necessary.

• SNR domain. Further, a video player based on MPEG-4 can cope with dynam-

ically changing bitrates, so the server can switch within different quantization

levels (which results in lower bandwidth), without breaking the decodability

at the client side. Actually, when a stream was coded with constant bitrate,

each frame is coded with a different quantization level to stay within the given

bitrate bounds, anyway. Again, this switching is client transparent, and no

further signalling is necessary.

• Spatial domain. It is becoming more complicated, when the stream resolution

changes eg. from CIF to QCIF. Here the client decoder has to detect the

new resolution. Either it changes the displaying window size or it upscales the

lower resolution to the higher resolution. The latter is expected by the user

to save him/her from unnecessary perturbation because of display resizes [88].

Depending on available processing power and hardware acceleration, various

upscaling algorithms, deblocking filters and smoothing filters (see Subsection

3.2.3 on page 35) can further increase perceived quality.

• Codec domain. Obviously, whenever the codec has to be changed from eg.

MPEG-4 to H.263, the client terminal has to be informed a priori, so it can

initialize the new decoder and pass the new stream data to the correct decoding

engine (either in hardware or software).

Critical Discussion The above mentioned switching domains are only partially

available in actual video streaming systems like Real [79] since some domains pose

severe implementation problems.

Whenever a system supports video streaming over unreliable RTP/UDP, temporal

switching is available since it has to cope with packet loss, which will lead to lost frames

(as long as no retransmission or forward error correction is implemented). Changes

CHAPTER 5. STREAM SWITCHING 79

in quantization are normally not problematic since they are inherently anchored in

modern codecs like MPEG-4 or H.264, making SNR switching a widely used solution.

Although our ViTooKi MuViPlayer is capable of performing an automatic upscaling

using nearest neighbour interpolation after receiving a new codec header, other players

like the commercial (but freely available) QuickTime fail to do so and crash. So

switching in the spatial domain is available only in limited quality for today’s client

terminals.

Changing between different codecs is not very likely, not only because of missing

support of different codec libraries within one player, but also because of copyright

and marketing issues. ViTooKi [56], which is leveraging support of various codec

libraries, would basically be capable of codec switching, but this feature was not

implemented because of complexity reasons.

5.3 Switching in the Temporal, Spatial, and SNR

Domains

In the following, we want to propose a new way of combining switching streams with

dynamic in-stream adaptation. The switch set consists of different quantization and

resolution streams and switching will be used as a coarse grained reaction to buffer

and network problems. At the same time, fine-grained dynamic in-stream temporal

adaptation is applied to compensate small bandwidth fluctuations. We will show that

this novel approach substantially improves visual quality and keeps the client buffer

in a more stable state than just coarse grained stream switching.

The main challenge for video streaming in lossy environments is to optimize user

perception. The most important rule of thumb is to never let the client buffer run

out of data. To ensure this, when the buffer level gets critical, the system switches

to a lower bandwidth stream, so more video data can be sent within one streamout

second, which fills up the buffer again.

If the buffer is within acceptable bounds but the available network bandwidth

does not reach the needed streamout bandwidth, according to Chapter 2, we have

to adapt the video data accordingly, to prevent a buffer underrun also in the future.

Using today’s available codecs, the cheapest and (at least in this work) well-discussed

CHAPTER 5. STREAM SWITCHING 80

in-stream adaptation method is temporal adaptation. Anyway, when temporal adap-

tation cannot compensate a severe bandwidth reduction (the remaining frame rate is

too choppy at eg. below 15 fps, or no more B-frames are available), stream switching

has to be performed.

On the other hand, when the buffer level is overly high, the system can switch to

a higher bandwidth stream for actively draining the buffer but gaining better quality,

which, under a normal buffer fill level, would not fit the given network bandwidth.

5.3.1 The Test Environment

The following evaluations were done with the Big Show Both video, encoded at various

quantizations and resolutions using the Microsoft reference software for MPEG-4.

The video has 13000 frames with one I-frame each 30 frames, using a static pattern of

P
1B→ P , which means IBPBPBP...PB (see Table 4.1 on page 47). Playout of the video

was done at 25 fps, which results in a video length of 520 seconds (8:40 minutes).

resolution kbps I-/P-quant B-quant overall
PSNR [dB]

relative
PSNR diff

absolute
PSNR diff

CIF 704 12 12 30.19 0 0
CIF 496 16 16 28.75 -1.44 -1.44
CIF 352 21 23 27.45 -1.30 -2.74

QCIF 241 12 16 22.54 -4.91 -7.65

Table 5.1: Used switch set of streams with varying resolution and quantization

Table 5.1 lists the used variations, further called the switch set, representing the

different variations available. The average bandwidth in kbps is always decreased

by close to 30% for each consecutive variant. All streams are streamed with a 15%

increased streamBW , to compensate for variable bit rate variation (see Chapter 2).

It was not possible to encode a CIF version to reach a bandwidth of 241 kbps

(which is 30% below 352 kbps), so some other means of reduction had to be taken.

Since this work is focussing on the MPEG-4 video codec, using the reference encoder,

it was not an option to change the codec to eg. H.263. So spatial reduction is obviously

the most useful way, when further SNR reduction fails (quantization is already at its

lowest bounds). Further, having (at least one) QCIF version in the switch set will

CHAPTER 5. STREAM SWITCHING 81

enable the server to better fulfill special requirements from low resolution clients like

cell phones or handhelds.

Production of the QCIF version was performed as follows: the original CIF video

was downscaled to QCIF in the uncompressed (YUV) domain using the simple and

fast nearest neighbour search algorithm as described in section 3.2.3. After decoding

at the client side, this QCIF video was upscaled again to CIF (using nearest neighbour

search) and then compared to the original CIF version. This results in an effective

relative PSNR loss of -4.91 dB to the next higher quality in CIF resolution. Please

note that better scaling methods will lead to significantly better results (see section

3.2.3), but those were out of scope and computational power of this work and test

environment.

Similarly to the steppy bandwidth curve in Figure 5.1, the gradual degradation

and increase of the available bandwidth was simulated with the Linux traffic shaping

class leaky bucket filter, simulating a 50% bandwidth variation range from 700 kbps

down to 343 kbps. Starting at 700 kbps, the bandwidth is reduced by 30% every

thirty seconds, so the next step will be 490 kbps for 30 seconds, then the lowest step

of 343 kbps is reached. After another 30 seconds, the bandwidth goes up again to

490 kbps, until it reaches the top level of 700 kbps. After that, the whole process is

repeated infinitely. Because of steps based on a percentage value, this gives a steppy,

but U-shaped bandwidth curve.

In Figure 5.2(a), the spiky curve shows the measured streamout bandwidth, which

coarsely follows the traffic shaped bandwidth steps. Please note, that our streaming

environment, which was implemented within ViTooKi, was capable of estimating the

available bandwidth and the client buffer fill level based on knowledge on sent packets

and RTP NACK messages as described in Chapter 7.3. Retransmissions were also

enabled, so lost packets of important frames were sent again, which highly increases

visual quality. Exact matching of the traffic shaped bandwidth steps is impossible

because of packet size boundaries, so the used bandwidth spikes are always varying

within one MTU (maximum transfer unit). Further, since TCP-friendly behaviour is

envisioned, bandwidth is always re-measured and then the streamout bandwidth is

adjusted in an AIMD fashion (additive increase, multiplicative decrease). This leads

even more to the displayed spiky streamout bandwidth and shortly delayed reaction.

CHAPTER 5. STREAM SWITCHING 82

5.3.2 Coarse-Grained Stream Switching in the Spatial and

SNR Domain

In Figure 5.2(a), the red line for stream switching and the currently chosen stream is

coarsely following the network bandwidth. The decision on stream switching is based

on the available bandwidth and the client buffer. If the available bandwidth is very

far off the necessary stream bandwidth (below 30 %), or if the available video seconds

(V secs) stored in the client buffer fall below 5 video seconds, the current stream is

not acceptable any more and a lower bandwidth stream has to be chosen.

Despite normal down- and upstepping to select the est fitting stream in bandwidth

from the available switch set, further switching behaviour is noted. At streamout

seconds (Ssec) 28, 264, and 440, Figure 5.2(a) shows a down-stepping to a lower

quality stream version, triggered by very low client buffers. This nicely correlates

with the buffer fill level shown in Figure 5.2(b), which drops below the limit of 5

video seconds.

If the client buffer fill level is overly high, this can be used to enforce the system

to use a better quality video stream, even if network bandwidth is low. Our system is

configured to switch up to a higher quality stream whenever the client buffer exceeds

25 video seconds. This is shown at Ssecs 313 and 471, triggered by high client buffers

shown in Figure 5.2(b).

When buffers are very low, the lowest quality stream of our switch set has to be

chosen. Unfortunately, this is a QCIF stream, which has to be scaled up again on

the client side. This obviously gives very low PSNR results (see Figure 5.2(c)), but,

on the other hand, might be a perfect fit for a low-resolution client in other cases.

Anyway, the overall average PSNR loss for all 520 video seconds is -2.85 dB (in

comparison to always streaming the best quality stream).

CHAPTER 5. STREAM SWITCHING 83

(a) Network bandwidth and switching behaviour

(b) Client buffer fill level of available video seconds

(c) Qualitative reduction caused by adaptation

Figure 5.2: Stream switching without any further in-stream adaptation

CHAPTER 5. STREAM SWITCHING 84

5.3.3 Adding Fine-Grained Temporal Adaptation

Instead of using a QCIF version, the chosen method for commercially available so-

lutions like RealVideo [24] is to have low quality streams based on statically built

coarse grained temporal adaptation (eg. from 25 fps down to a 12.5 fps version). To

also cover this behaviour in our measurements, we have simulated this by using the

lowest quality P
1B→ P CIF stream from our switch set with I- and P-quantization 21

and a B-quantization of 23, which leads to an average bandwidth of 352 kbps. Then

we removed all B-frames, which results in a framerate of 12.5 fps and an average

bandwidth requirement of 232 kbps (which approx. leads to the wanted 30% reduc-

tion). With an average PSNR value of 24.73 dB, this stream suffers a relative PSNR

reduction of 2.72 dB (instead of -4.91 dB with the QCIF version) as compared to the

original (higher step) stream.

Although this low-framerate version gives better PSNR results than the QCIF

upscaled version, it lacks flexibility on low-resolution clients. For this reason, this work

will sustain from using coarse grained temporal versions, but will show the ability of

improving switching strategies by including finer grained temporal adaptation within

the actually chosen video stream. This will always give equal or better results than

simple stream switching.

Further, the following examples will show that fine-grained frame dropping in

some cases renders unnecessary to switch down to the very lowest quality, so it does

not matter if it would have been QCIF or a statically frame-rate adapted version.

Note, that our already defined switch set was chosen to offer P
1B→ P streams, so

there is always the possibility of finer grained, dynamic temporal adaptation within

the range of 25 to 12.5 fps.

All streaming tests with temporal adaptation where done using timely uniform

distribution, so we decided to only use P
1B→ P streams, although knowing, that

P
4B→ P would offer more adaptation possibilities. Especially when leveraged with a

quality based prioritization approach like QCTVA, also slightly better overall PSNR

results would be possible. Still, according to our findings in the previous chapter,

timely uniform distribution gives reasonable results with up to max. 50% frame rate

reduction (eg. down to 12.5 fps), not to mention the faster prioritization process,

when performed in the compressed domain.

CHAPTER 5. STREAM SWITCHING 85

Adding dynamic temporal adaptation, Figure 5.3(a) shows the better switching

behaviour, when the streaming environment is exposed to the exact same bandwidth

curve from the previous measurement in Figure 5.2. It was never necessary to fall

back to the lowest bandwidth stream (may it be either QCIF or a 12.5fps CIF stream).

This was achieved by intermediate and dynamic temporal adaptation, as shown in

Figure 5.4. Note, that it was never necessary to drop the frame rate below 18 fps.

Further, there were many situations, where no temporal adaptation was necessary at

all, so we were keeping the original frame rate of 25 fps.

Figure 5.3(b) shows that, because of temporal adaptation, the client buffer is more

stable and always within safe bounds. The average PSNR loss (see Figure 5.3(c)) is

at -2.37 dB, so it is also better than simple stream switching shown in Figure 5.2(c).

CHAPTER 5. STREAM SWITCHING 86

(a) Network bandwidth and switching behavior

(b) Client buffer fill level of available video seconds

(c) Qualitative reduction caused by adaptation

Figure 5.3: Stream switching with temporal adaptation

CHAPTER 5. STREAM SWITCHING 87

Figure 5.4: Visual frame rate per playout second after temporal adaptation

CHAPTER 5. STREAM SWITCHING 88

5.3.4 The Optimal Switching Point

As stated before, to perform switching, we have to have a well-selected switch set of

available videos. Further we need correct and immediate feedback on the actually

available network bandwidth, which also allows us to estimate the client buffer fill

state.

Still, there are some other issues how to find the optimal point in time to decide

on switching. It is especially important to synchronize to the next possible I-Frame

in the new video stream, because future decoding has to be permitted without any

missing reference frame information, which would result in decoding errors.

For other codecs like Real’s SureStream, specially encoded S-frames (switching

frames) enrich the frame patterns to allow earlier switching without wasting too much

bandwidth in comparison to I-frames [24]. Those S-frames are also introduced into

new codec development efforts like the fine-grained MPEG-4 scalable codec (FGS) [89]

or MPEG-4 AVC [90]. Please note that MPEG-4 in the Advanced Simple Profile [29]

(as it was used by our measurements) is only capable of I-, P- and B-frame support, so

there is room for further optimization of our experiments when changing to another

codec. So when we speak of I-frames in the following, this is meant interchangeably

with any possible synchronization frame, either I-frame or S-frame.

Figure 5.5: Streams are switched at the next available I-frame

When the system has made the decision to switch, it has to find the next possible

switch point, where it has to take special care for decodability of referencing frames

and resynchronization to the next available I-frame. Further, for any given timestamp,

no frame should be sent doubly, so each frame is sent out only in one single quality.

CHAPTER 5. STREAM SWITCHING 89

For that, the actual streamout position (the frame number) in the old stream has

to be used as the start point in the new video stream. Starting at this point in the

new stream, the system has to step forward until the next available I-frame is found.

All frames before this I-frame are continued to be streamed out by the old stream

stopping closely before this I-frame, and then, finally, the switch-over to the new

stream is performed (see Figure 8.8).

Unfortunately, when switching at the next I-frame, there is a problem for the

following B-frames in the new stream: Each B-frame needs two reference frames, but

the new stream only supplies the decoder with one, namely this first I-frame. So

the old P-frame from the old video is still in the decoder buffer and will be used as

the second reference frame. In the down-switching case, this even results in better

quality, since the B-frames are able to use a higher quality reference frame for their

motion vectors. In the up-scaling direction, those first B-frames might suffer from a

little loss in quality, but since both videos at this point in time are holding absolutely

the same video content, it will not be visible as any decoding error.

An extension to this naive search of the next switch point could be taking also

into account the available client buffer fill level. Especially when the client buffer

is overly full (eg. it holds more than 25 video seconds of data in advance), we will

switch up to a better quality, although this is not reflected by the available network

bandwidth. Keep in mind that the buffer is overly full with low-quality frames, so it

also makes sense to drop some later video seconds and to switch streams at an earlier

point in time, so eg. flush the buffer so that it only holds 10 video seconds of low

quality but is receiving new (high quality) video data after switching is performed.

This gives faster user satisfaction by increased quality but obviously means to accept

redundant quasi-retransmission, since the same frame was sent in different qualities

and the system decides on the latter and higher quality one. This behaviour might be

unwanted if the client has to pay for network usage and adds some extra algorithmical

overhead for client and server.

For more transparent behavior, our ViTooKi streaming environment refrained

from flushing the buffer and forcing unnecessary quasi-retransmission. But as de-

scribed in the last section and as shown in the figures, we took into account the

actual buffer fill level for making the switching decisions. If the buffer fell below the

CHAPTER 5. STREAM SWITCHING 90

low water mark of 5 seconds, we enforced down-switching, but on the other hand, if

we exceeded a 25 seconds high water mark, we switched up to a higher quality.

5.4 Conclusion and Future Work

Although the combination of stream switching and B-frame dropping offers better

buffering behavior, the user is subjected to an ongoing fluctuation in the visual frame

rate. First subjective evaluations have shown that this loss of frame rate is not

critical, as long as variations always stay in the upper frame rate ranges (somewhere

between 25 and 18 fps). Although PSNR loss in our experiments is severely impacted

by missing frames (which does not reflect the real visual experience), the proposed

combination of stream switching and the temporal adaptation only result in an overall

average quality loss of 2.37 dB PSNR, whereas the simple switching only scenario

suffers from -2.85 dB PSNR.

Still, this raises the question, if PSNR is a suitable measure for temporal differences

in a video. Until now we take it as the only really widely accepted method, and ignore

others like Just Noticable Difference (JNDmetrix) or Visual Quality Metric (VQM)

[91, 92] because of their complexity and unthoroughly tested state. Further, they are

not easily and freely available to the open public, so it is hard to deliver comparable

results for other studies.

The used switch set of 4 streams, so the pool of available stream variations was

hand-chosen from hundreds of pre-encoded streams, using the Microsoft reference

software for MPEG-4 with a static P
1B→ P frame pattern. To provide a streaming

server with a good switch set, it is important to use variable frame patterns and

variable quantization steps, so an encoder can be set to produce a certain (fixed)

average bandwidth stream for each -30% step. It is not feasible for real production

servers to produce dozens of streams and choose the best ones.

For production servers, most of the actually available commercial or open-source

codecs like OpenDivX [93] or FFmpeg [65], are offering better qualitative results at

lower bandwidths, even using double-pass coding to optimize their results, choosing

of variable frame patterns and so on.

On the other hand, variable frame patterns also vary in the amount of scalability

CHAPTER 5. STREAM SWITCHING 91

(available B-frames within one video second) and will lead to more irregularily arriving

I-frames which can be used as switch points. This makes the reaction time between

detecting and really switching highly dependent on the actual position in the video

stream. Therefore, for these measurements, a static pattern over the whole video was

chosen.

Using all of the above mentioned optimizations and adding special S-frames (see

above) will further improve the performance and positive user perception of stream

switching, where in-stream adaptation always will help on stabilizing buffers and/or

preventing unnecessary stream switches.

This work used temporal adaptation as a proof of concept, but all other (not yet

widely) available in-stream adaptation methods of various scalable video codecs (eg.

MPEG-4 FGS or wavelet coding) are even more capable of stabilizing buffers and/or

preventing unnecessary stream switches, because they work on even more fine grained

steps.

Finally we conclude that in-stream adaptation using any scalable codec in connec-

tion with stream switching is a perfect combination, when there are enough streams

available in the switch set, so the in-stream adaptation can be performed in its opti-

mal range (eg. stay between 25 and 15 fps). Future work will have to investigate the

impact of such a multi-dimension adaptation system with respect to server load and

the number of possible parallel users. Further, evaluations with actually available

codecs and with variable frame patterns have to be performed, to find reasonable

combinations of stream switching and in-stream adaptation under those conditions.

CHAPTER

6 Multimedia Negotiation and

Streaming

6.1 Overview

In this chapter, we will discuss all protocols which are needed to enable a standard

conformant client/server multimedia streaming environment based on an unreliable

best effort network. This includes sending the consecutive packets over the network

with RTP and receiving RTCP statistics on the overall packet loss. Further, ways

to communicate and setup a multimedia presentation using RTSP with an included

SDP description of the included video and audio streams are explained.

6.2 Multimedia Data Transport with RTP/RTCP

The Real-Time Transmission Protocol (RTP) is defined in RFC 1889 [94]. It provides

end-to-end delivery services for all kinds of data with real-time characteristics. To

make RTP easy to include in actual networks, it might be based on different under-

lying standard protocol layers, like ST-II, UDP/IP, IPX or ATM AAL5. The widest

spread protocol is UDP, a packet-oriented protocol based on IPv4, which offers check-

sum services but does not guarantee that packets arrive in order or arrive at all. RTP

itself also does not guarantee delivery or prevent out-of-order delivery, but includes

packet sequence numbers to reorder incoming packets and other useful information for

real-time multimedia data like presentation time stamps. These have to be handled

by the application.

IP, and hereby UDP, also offers the interesting feature of multicasting live content,

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 93

which means having multiple clients receiving one and the same packet sent by a

server. This decreases network load and also guarantees smaller server-side connection

maintaining costs (eg. a server just streams its live stream, but it does not care about

who is listening). Please note, that this solution is not applicable on video on demand

systems, where each client chooses its own start time. Since this work is focussing

on exactly this video on demand scenario, we are not using multicast and maintain

multiple connections for each attached client.

6.2.1 Mixers and Translators

Since RTP connections allow multiple clients with different capabilities which are

connected over various networks, RTP defines ways of intermediate data adaptation

and network transition.

Mixers are positioned somewhere on the route between the server and the clients,

and change the incoming data in some means, eg. they change high-quality video to

a lower resolution and stream this low-quality video to a client connected via a low

bandwidth network. All other clients connected via high bandwidth networks still

receive the high-quality video. In the context of this work, this will be called a

“multimedia gateway”, since it performs simple forwarding but also transcoding on

demand.

Since every distinct RTP stream has a distinct RTP synchronization source iden-

tifier (SSRC), every re-mixed stream gets a new identifier, but keeps track of the

originating sources as a “contributing source” (CSRC), so the client still knows the

original source and also possibly negotiates directly with that original source.

Translators forward RTP packets with their source identifiers intact, since they

do not change the payload itself. A translator may be used on firewalls which do

not allow multicast streams, so the multicast is translated into unicast and directly

sent to the clients behind the firewall (enabling all possibilities of authentication and

other means of access control). Another typical usage for translators would be as a

gateway between underlying networks like eg. UDP/IP and ATM AAL5.

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 94

6.2.2 Data Packet Format

The following section describes the RTP packet format, which defines the general

fields for multimedia data transmission.

Datagram Length

Source Port

Destination IP Address

Synchronization Source Identifier

Timestamp

R
T

P
U

D
P

IP
v4

−
H

ea
de

r

SequenceNr

Checksum

Dest Port

ToS

Header chksumProtocolTime to Live

Source IP Address

Version Length(bytes)

FrgmOffsFlagIdentification

Hdr Lngth

Options (if any)

Profile−Specific Information

(Other) Contributing Source Identifier

(Last) Contributing Source Identifier

(First) Contributing Source Identifier

V PTMP X CC

Figure 6.1: RTP header on top of UDP/IPv4

Figure 6.1 shows the RTP header on top of UDP/IPv4. Only the most important

fields of the RTP header itself will be discussed here, for more detailed information

please refer to RFC 1889 [94].

Payload Type (7 bits) The payload type helps the application understand and

interpret the RTP data correctly. There are some predefined payload types depending

on the used RTP profile, eg. for video and audio [5] like GSM, H.261 or MPEG-1 (see

section 6.2.4). Eg. for MPEG-4, there is no fixed predefined payload type available,

so dynamic ones are generated for each stream.

Sequence Number (16 bits) The sequence number is incremented for each RTP

packet sent, and may be used by the receiver to detect packet loss and to restore the

sequentially correct packet order. The initial value should be a random number, to

make known-plaintext attacks on encrypted packets more difficult. Even if the server

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 95

itself does not provide packet encryption, the sequence number should be randomly

chosen, because there might be translators on a packets’ way which provide secure

tunneling.

Timestamp (32 bits) The timestamp has to be generated by a monotonically and

linearly increasing clock. To allow sufficient jitter calculations and synchronization

accuracy, the clock frequency should be more fine-grained than eg. a given video

frame rate or audio sample rate. For security reasons, the timestamp should also be

initiated with a random number [95]. Over multiple RTP packets, the timestamp

might also be equal whenever multiple packets were (logically) generated at the same

time. Consecutive timestamps might also be out of order, even if their sequence

numbers are monotonically increasing: eg. MPEG encoded video streams store frames

in a different order than they have to be displayed later on.

Synchronization Source Identifier (SSRC) (32 bits) This is a randomly cho-

sen ID for an RTP stream. The SSRC has to be unique so a client, mixer or translator

can distinguish between different RTP streams. Even though the chance for multiple

but equal SSRCs is low, RTP implementations must be prepared to detect and resolve

collisions.

Contributing Source Identifiers (CSRC) (32 bits) As discussed before, mixers

include all originating sources as “contributing” ones for the newly generated RTP

stream. The CSRC Count (CC) field (4 bits) holds the number of stored CSRCs. If

there are more than 15 sources, all above those fifteen are lost.

6.2.3 Control Packet Format

To monitor and adjust quality of service of RTP streams, there is the RTP control

protocol (RTCP), which is also defined within the RFC for RTP. Such an RTCP

packet carries information about packet loss, jitter, and so on. RTCP is based on the

periodic transmission of control packets to all participants in the session, using the

same distribution mechanism as the data packets. Data and control packets have to

be two different streams, so when we are using UDP/IP, we use two consecutive ports

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 96

(n for data, n + 1 for control, where n has to be an even number). This also allows

monitoring stations, only to receive RTCP packets and gather statistics.

RTCP performs four functions:

1. The main feature is to send information about the behavior of the underlying

network where the affected stream is sent over. This feedback can be immedi-

ately used for adaptive encodings, to decrease or increase the quality of video

or audio or to switch to a different encoding mechanism.

2. RTCP also has information packets where clear-text messages are sent. The

most important is the CNAME, which is the unique canonical name for an

RTP stream (eg. jdoe@home:mystream). So if the SSRC changes because of

collision, all participants keep track of the stream by its CNAME.

3. In a multicast setup with multiple clients, each participant sends its control

packets to all the others. This is needed to calculate the rate at which the

RTCP packets are sent, which assures a reasonable proportion of the amount of

RTCP packets versus the amount of RTP packets sent out over a certain time.

For unicast, this reduces to packets sent between the client and the server.

4. Functions 1-3 should be used in all application scenarios, but there is a further

possible usage. RTCP could be used to keep track of all joined participants

in a loosely controlled multicast session, where virtually everyone may connect

and disconnect without membership control or parameter negotiation. This

becomes possible since whenever a client joins a session and receives data, it

will send unrequested RTCP packets to the server.

To keep control traffic low even in a multi-user scenario, it is recommended to

dynamically adjust the RTCP traffic to only 5 % of the overall data traffic. Also, the

minimum interval between two RTCP packets is recommended to be 5 seconds. To

overcome those limitations of too seldom RTCP packets, this work will discuss a new

extension on more immediate feedback (see Section 7.3).

RTCP defines not only sender and receiver report packets, but also textual source

description packets, a goodbye packet and a flexible application-defined packet. All of

those RTCP packet types use the same header specification for the first 16 bytes, but

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 97

with different packet types (PT) starting from 200 upwards, so it is easy to identify

the different packets.

Sender and Receiver Reports To inform all partners (which, for unicast, is just

the server and one client) in a session about packet loss and the actual network

behavior like jitter, both client and server are sending RTCP reports to each other.

The server sends an RTCP sender report (packet type = 200), whereas all clients

send RTCP receiver reports (packet type = 201). The only difference between the

RTCP sender report (see Figure 6.2) and the RTCP receiver report (see Figure 6.3)

is, besides the packet type code, the 20-byte sender information section with the

according timestamps and a packet and byte counter. The NTP timestamp stores

the globally defined time when the report was sent, whereas the RTP timestamp

corresponds to the timestamp format used in the RTP packets, which can also be

offset by a random value, like it is used in the according RTP packets.

Then a variable number of report blocks (according to the report count field (RC))

are attached. They store the SSRC, some statistics about packet loss and jitter, and

finally the time of the last sent RTCP packet related to this SSRC and the time since

that last sent RTCP packet. This is very useful for the receiver of this packet to

calculate the roundtrip time.

SDES: Source Description RTCP Packets Since every RTP stream has some

cleartext properties like its canonical name, RTCP offers a way to distribute those

to all participants. An RTCP packet with SDES information (packet type = 202) is

shown in Figure 6.4. Those properties are

• CNAME: the canonical identifier for an RTP stream (eg. jdoe@home:mystream)

• NAME: username, who set up this RTP stream

• EMAIL: electronic mail address of the above user

• PHONE: phone number in the international format (leading plus sign (+) and

country code)

• LOC: geographic user location

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 98

Length

% Lost

Profile−specific Information

% Lost

Extended Highest Sequence Number Received

Extended Highest Sequence Number Received

Sender’s Packet Count

Sender’s Byte Count

RTP Timestamp

NTP Timestamp

SSRC of Sender

Interarrival Jitter

Time since Last Sender Report

Interarrival Jitter

Time since Last Sender Report

Pt:200V RC

Cumulative Packets Lost
SSRC of First Source

SSRC of Last Source

Cumulative Packets Lost

Time of Last Sender Report

Time of Last Sender Report

..Further Report Blocks

P

Figure 6.2: RTCP sender report (packet type = 200)

• TOOL: application name and version

• NOTE: notice or status field about the source

• PRIV: private application-specific extensions

• END: indicates the last SDES item for this SSRC/CSRC.

To keep network load low, there should be an algorithm for sending different SDES

packets, eg. always send CNAME, but send EMAIL every fifth packet, do not send

all the others.

BYE: Goodbye RTCP Packets There is a special BYE packet with the packet

type set to 203. It might also include a text like “camera malfunction”. Mixers should

forward those BYE packets unchanged and if necessary, send their own BYE packets

for their generated SSRCs.

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 99

Length

Profile−specific Information

% Lost

% Lost

Extended Highest Sequence Number Received

Interarrival Jitter

Time since Last Sender Report

Interarrival Jitter

SSRC of Sender

Time since Last Sender Report

Extended Highest Sequence Number Received

V Pt:201RC

SSRC of First Source

Cumulative Packets Lost

Cumulative Packets Lost

SSRC of Last Source

Time of Last Sender Report

Time of Last Sender Report

..Further Report Blocks

P

Figure 6.3: RTCP receiver report (packet type = 201)

APP: Application-defined RTCP Packets Finally, there is an APP packet,

which is open for experimental use and for application-specific functions. Herefore

the packet type is 204.

6.2.4 RTP Profile for Audio and Video (RTP/AVP)

RTP itself does not define any behavior and handling of data types. Special profiles

describe how to treat different data types, define the exact data packet formats and

their packetizing issues. For audio and video, there is already a predefined profile

defined in the RFC 1890 [5]. It supports all different audio and video formats and

defines how they have to be stored in the RTP payload data area.

Eg. for audio, RFC 1890 defines a default 20 ms packetization rate (which might

go up to 200 ms to reflect some formats’ bulk frame sizes). The sampling frequency

can be chosen out of 8000, 11025, 16000, 22050, 24000, 32000, 44100, and 48000 Hz.

Only some audio and video encodings are shown here, for a complete list refer to

RFC 1890 [5]. Newer encodings like for MPEG-4 audio/visual streams are discribed in

RFC 3016 [96]. Other packetization formats like MPEG-4 FlexMux [97] are discussed

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 100

LengthV RC Pt:202

SSRC/CSRC of First Source

SSRC/CSRC of Last Source

.....

.....

P

CNAME=1 Length User and Domain Name

CNAME=1 Length User and Domain Name

... List of Other SSRC/SDES Chunks

Further SDES Items

Further SDES Items

Figure 6.4: SDES: source description RTCP packet (packet type = 202)

and compared in [98].

6.2.4.1 Some Audio Encodings

RFC 1890 exactly describes the packet formats of various audio encodings bit by bit.

G.722, G.723, G.726, G.728, G.729 According to ITU-T Recommendations,

those encoding standards define audio encodings with rates between 6.4 kbps up

to 64 kbps. Those encodings are used for videophone terminal applications up to

Internet telephony in high quality.

GSM, GSM-HR, GSM-EFR The European GSM standard for full-rate speech

at 13 kbps (33 bytes for 160 samples), half-rate speech (14 bytes) and extended full-

rate speech (31 bytes).

MPA MPA defines the payload for MPEG-1 and MPEG-2 audio in the differently

complex layers I, II, and III. The exact payload format for MPEG-1/MPEG-2 audio

and video can be found in RFC 2250 [99].

RED The redundant audio payload format “RED” (defined in RFC 2198 [100])

holds not only compressed audio data for the current interval, but also a highly

compressed version of the last interval. This allows to reconstruct lost packets in

better quality than silence substitution or amplitude/frequency interpolation.

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 101

6.2.4.2 Some Video Encodings

The RTP timestamp frequency is defined as 90,000 Hz for all the following video

encodings. This suffices enough for jitter estimation and calculations with RTCP

timestamps.

Motion JPEG MJPEG defines a way of storing consecutive JPEG-encoded still-

images. Some initialization tables are only sent once and then each raw image data

set is sent with only a minimum of necessary header information. Find out more

about RTP/MJPEG in RFC 2435 [101].

H.261, H.263 According to ITU-T Recommendations, those encoding standards

define video encoding with low bitrates up to 64 kbps. These encodings are used for

videophone terminal applications and video telephony.

MPV MPV defines the payload for MPEG-1 and MPEG-2 video and, like MPA

for audio, is also described in RFC 2250 [99].

6.3 Media Control and Announcement with

RTSP/SDP

Before a client can view any video/audio content, it somehow has to contact the

server and find out the possible versions of the video. This handshake also includes

passing information about terminal capabilities and channel restrictions, or supported

protocol features (eg. RTP with extensions).

To maintain interoperability between various client/server streaming solutions,

they all should behave according to the Internet Streaming Media Alliance (ISMA)

implementation specification [102]. This document standardizes the general behavior

of a media server and media clients, taking full advantage of available open standards

like RTP/RTCP over UDP/IP, RTSP, SDP and the MP4 file format.

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 102

6.3.1 Session Description Protocol (SDP)

The purpose of SDP [103] is to supply information about available media streams and

session settings, so receivers of this information can eg. adjust their decoding and

displaying environment according to the stream they are going to receive.

6.3.1.1 General Session Description Block Layout

An SDP block includes

• a session name and purpose,

• a time, when and how long a session is active and valid,

• the media streams contained in this session,

• necessary information to receive those media (eg. IP addresses, ports, formats).

An SDP session description consists of a number of lines of text. Each line has

the form <type>=<value>, where <type> is always one single character. There are

no whitespaces before or after the = sign and every line is concluded with carriage

return/line feed (CR/LF).

Table 6.1 shows the generic setup of an SDP block. Optional items are marked

with an asterisk (*). The order sequence of the items is fixed, so, first of all, there

has to be the version (v=) item followed by the owner item (o=).

6.3.1.2 Important Fields

Please use Table 6.2 as an example of a full SDP session description to find the

described fields here.

Attributes (a=) Attributes are either in the form of a property (a=<attribute>)

or for passing values (a=<attribute>:<value>). They might be used on a “global

session level” or on a “per media level”.

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 103

Media Announcements (m=) A session description may contain a number of

media description blocks, starting with an m= item followed by some optional items,

mostly at least some attributes and a bandwidth hint.

Media announcements use the following parameters:

m=<media> <port> <transport> <fmt list>

• <media> might be either audio, video, application, data, control

• <port> is the transport port, so in the RTP case, this should be an even number

in the range of 1024 to 65535. Still, it could be zero if eg. the port is negotiated

by some other means than SDP.

• <transport> sets the used transport protocol, which is most likely RTP/AVP or

UDP.

• <fmt list> stands for one or more subsequent fields with media-specific format

information. If set to RTP/AVP, it will be the media payload type defined in

RFC1890 [5].

Since also dynamic RTP payload types can be used for various media formats,

we need some other means to send additional information about the exact codec and

sampling rate. This can be done by the following attribute

a=rtpmap:<payload type> <encoding name>/<clock rate>[/<enc params>]

MPEG-4 is not defined by RFC1890 [5], so MPEG-4 has to use one of the dynamic

RTP payload types and has to somehow inform the receiver about the real type of this

media stream. To further add specific format information, SDP defines the following

attribute:

a=fmtp:<format> <format specific parameters>

Table 6.2 describes an MPEG-4 video stream with the according rtpmap and

fmtp attributes. First, in the global session level, the creator and the video length

(13 seconds) is defined. The first (and only) media block lists information about the

needed bandwidth, the codec MP4V-ES and spatial resolution of CIF (352x288).

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 104

Session description (main) block
v= (protocol version)
o= (owner/creator and session identifier)
s= (session name)
i=* (session information)
u=* (URI of description)
e=* (email address)
p=* (phone number)
c=* (connection information - not required if included in all media)
b=* (bandwidth information)
one or more time description blocks (see below)
z=* (time zone adjustments)
k=* (encryption key)
a=* (zero or more session attribute lines)
zero or more media description blocks (see below)

Time description block
t= (time the session is active)
r=* (zero or more repeat times)

Media description block
m= (media name and transport address)
i=* (media title)
c=* (connection information - optional if included at session-level)
b=* (bandwidth information)
k=* (encryption key)
a=* (zero or more media attribute lines)

Table 6.1: General setup of a session description data block

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 105

v=0

o=StreamingServer 1043923944 926516 IN IP4 143.205.122.54

s=lotr.mp4

e=admin@video.itec.uni-klu.ac.at

c=IN IP4 143.205.122.54

t=0 0

a=range:npt=0-13.23300

m=video 0 RTP/AVP 96

b=AS:1514

a=rtpmap:96 MP4V-ES/90000

a=fmtp:96 profile-level-id=1

a=cliprect:0,0,352,288

Table 6.2: Example of an SDP session description data block

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 106

6.3.2 Real-Time Streaming Protocol (RTSP)

The Real-Time Streaming Protocol (RTSP) [104] establishes and controls either a

single or several time-synchronized streams of continuous media such as audio and

video. The stream itself is typically not included, but might be also be interleaved

into the control stream. The stream may also be sent via RTP, or any other real-time

protocol like RealNetworks RDP.

RTSP provides “VCR-style” remote control functionality, like play, pause, fast

forward, reverse, and absolute positioning.

The protocol has a similar syntax and operation to HTTP/1.1 [105], and the

default port is 554. Each presentation and media stream is identified by an RTSP

URL like rtsp://video.bigserver.com/new-smash-hit.mp4

For error codes, HTTP error codes like “404 File not found” are re-used, but

there are also new ones like “453 Not enough bandwidth”.

6.3.2.1 Important Methods

In the following, we will list the most important methods to get information about

existing streams, setting up streaming sessions and then play/pause/stop them. All

examples are based on the ISMA standard [102].

DESCRIBE The DESCRIBE method retrieves the description of a presentation

or media object identified by the request URL from a server.

C->S: DESCRIBE rtsp://kermit:3128/lotr.mp4 RTSP/1.0

CSeq: 1

Accept: application/sdp

User-Agent: ItecMp4Player

S->C: RTSP/1.0 200 OK

Server: ItecMp4Server

CSeq: 1

Content-Type: application/sdp

Content-Length: 739

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 107

Date: 30 Jan 2003 11:52:24 GMT

Content-Base: rtsp://143.205.122.54/lotr.mp4/

v=0

o=ItecMp4Server 1043923944 926516 IN IP4 143.205.122.54

s=lotr.mp4

e=admin@

c=IN IP4 143.205.122.54

b=AS:1514

t=0 0

a=control:*

a=mpeg4-iod:"data:application/mpeg4-iod;base64,AoCAgG0AT

////wH/A4CAgCoAAgAEgICADQEFAAATAAAAmAAAAAoGgICAEAAkAAAD6

AABX5AgAAAAABcDgICAMgADAASAgIAVAg0AABMAAACYAAAACgWAgIADA

ABgBoCAgBAAJAAAA+gAAV+QIAAAAAAX"

a=isma-compliance:1,1.0,1

a=range:npt=0-13.23300

m=video 0 RTP/AVP 96

b=AS:1514

a=rtpmap:96 MP4V-ES/90000

a=control:trackID=1

a=cliprect:0,0,352,288

a=fmtp:96 profile-level-id=1

a=mpeg4-esid:1

So the client asks the server for a media object lotr.mp4 and expects an SDP

description (application/sdp) [103]. The server answers with a unique sequence num-

ber CSeq and an SDP block with information about the title, author, bandwidth, and

time length. Since this MP4 file might contain multiple MPEG-4 elementary streams,

SDP also transmits the initial object descriptor (IOD). Then all elementary streams

are listed with their type, accessible network protocol and trackIDs. Here, only a

video stream is included. Find more information about SDP in Section 6.3.1.

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 108

SETUP Now the client knows the details about the RTP/AVP stream and will

prepare everything by using the SETUP command. The URL is extended by the

trackID, to directly set up the first (and only) video elementary stream.

C->S: SETUP rtsp://kermit:3128/lotr.mp4/trackID=1 RTSP/1.0

CSeq: 2

Transport: RTP/UDP;unicast;client_port=40002-40003

S->C: RTSP/1.0 200 OK

CSeq: 2

Server: ItecMp4Server

Session: 71987123

Date: 30 Jan 2003 11:52:24 GMT

Transport: RTP/UDP;unicast;client_port=40002-40003;

source=143.205.122.54;server_port=20000-20001

The client installs the stream from the MP4 container and the server sets it up,

using the session number. If there where multiple streams (eg. an additional audio

stream), there had to be two SETUP commands, but both streams would be accessible

with the same session ID.

PLAY After that, the full session with all active (already set up) streams is started

and synchronized. The Range: field depicts the start and end time within a media

stream, so this allows random access into the stream.

C->S: PLAY rtsp://kermit:3128/lotr.mp4 RTSP/1.0

CSeq: 3

Session: 71987123

Range: 0.0 - 13.233000

S->C: RTSP/1.0 200 OK

CSeq: 3

CHAPTER 6. MULTIMEDIA NEGOTIATION AND STREAMING 109

PAUSE The PAUSE communication scheme looks like that for PLAY. When a

stream is paused, all reservations and already set up paths and streams stay active

but no data packets are transmitted.

TEARDOWN The TEARDOWN communication scheme looks like the one for

PLAY. But here, all resources associated with the session are freed. The session

identifier is not valid anymore and to restart a stream, a new SETUP request has to

be sent.

CHAPTER

7 Extensions to RTSP, RTP

and RTCP

7.1 Overview

To enable stream switching within more than the temporal and SNR domain, which

can be handled client-transparently, but also for the client non-transparent domains

like the spatial and codec domain, extensions for RTSP were proposed in an Internet

draft [106]. They are discussed in the following.

To allow the proposed two-dimensional dynamic adaptation (the combination of

stream switching and in-stream temporal adaptation) within a video streaming ses-

sion, the basic standard of RTP/RTCP was extended with more immediate RTCP

feedback mechanisms which also allow statistics on exact frame loss. This is further

used to implement RTP retransmission which severely increases the visual quality. In

this chapter we evaluate the improvements and hereby show the importance of these

extensions for a viable multimedia streaming environment.

7.2 Extensions for RTSP Stream Switching

To make life easier for client terminals, the server should inform the client about

possible switch sets already at the beginning of a streaming session, so all available

codec/bandwidth/domain combinations, that might become active, can be correctly

set up and prepared to function. The Internet draft on stream switching [106] presents

possibilities for preliminary listing and on-demand signalling of switchable streams

based on extensions to RTSP and SDP. Please find an overview on RTSP and SDP

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 111

in Section 6.

Note, that these extensions only become really useful if the server has to inform

the client about its decision on switching the stream, so whenever non-transparent

stream switching is used. This work was evaluating only client transparent switching,

so none of the here listed RTSP extensions where actually implemented. Nonetheless,

this extension is an important contribution for future stream switching environments

to leverage all possible switching domains, so it will be discussed in the following.

Before coming up with new and self-standing commands, namely SWITCHSETUP

and SWITCHSIGNAL, this Internet draft also evaluated the (re-)use of already existing

RTSP commands like PAUSE/PLAY or MUTE/UNMUTE. Unfortunately a re-use of the old

commands would cause incompatibility problems or sub-optimal behavior.

The following example RTSP communication shows the usage of the new exten-

sions. It was taken from [106], but is further simplified. A client’s DESCRIBE request

is answered by an SDP description containing all available (switchable) streams, with

bandwidths ranging from 200 kbps, over 100 kbps, down to 50 kbps.

C->S: DESCRIBE rtsp://foo/twister RTSP/1.0

CSeq: 1

S->C: RTSP/1.0 200 OK

CSeq: 1

Content-Type: application/sdp

Content-Length: xxx

v=0

o=- 2890844256 2890842807 IN IP4 172.16.2.93

s=RTSP Session

i=An Example of RTSP Session Usage for Stream Switching

a=control:rtsp://foo/twister

t=0 0

m=video 7722 RTP/AVP 96

a=rtpmap:96 MP4V-ES/1000

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 112

a=control:rtsp://foo/twister/video1

b=AS:200

m=video 7726 RTP/AVP 98

a=rtpmap:98 MP4V-ES/1000

a=control:rtsp://foo/twister/video2

b=AS:100

m=video 7726 RTP/AVP 100

a=rtpmap:100 MP4V-ES/1000

a=control:rtsp://foo/twister/video3

b=AS:50

After the client has received all possible choices, it answers with a SETUP for the

main stream, but signals the server that it will be accepting all other variants for

switching. To do so, the newly introduced command SWITCHSETUP is used in con-

junction with the SessionID, which was received from the standard SETUP command.

An optional header field of the SWITCHSETUP command is Switch-control, which,

in this example, is set to

Switch-control=non-transparent-forewarning: 2000

So the server might switch on its own at any time to every stream, but when

choosing this non-transparent stream, a warning has to be sent out at least 2000

milliseconds before the real switching is performed.

Further note that client and server negotiate different UDP ports for each stream.

This is not obligatory, since this differentiation can also be performed using the dy-

namically assigned RTP Stream-Ids received in the Session Description (SDP) block

within the DESCRIBE answer.

C->S: SETUP rtsp://foo/twister/video1 RTSP/1.0

CSeq: 2

Transport: RTP/AVP;unicast;client_port=8002-8003

S->C: RTSP/1.0 200 OK

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 113

CSeq: 2

Transport: RTP/AVP;unicast;client_port=8002-8003;

server_port=9004-9005

Session: 12345678

C->S: SWITCHSETUP rtsp://foo/twister/video2 RTSP/1.0

CSeq: 3

Transport: RTP/AVP;unicast;client_port=8006-8007

Session: 12345678

Switch-control=non-transparent-forewarning: 2000

C->S: SWITCHSETUP rtsp://foo/twister/video3 RTSP/1.0

CSeq: 4

Transport: RTP/AVP;unicast;client_port=8010-8011

Session: 12345678

Switch-control=non-transparent-forewarning: 2000

S->C: RTSP/1.0 200 OK

CSeq: 3

Transport: RTP/AVP;unicast;client_port=8006-8007;

server_port=9008-9009

Session: 12345678

S->C: RTSP/1.0 200 OK

CSeq: 4

Transport: RTP/AVP;unicast;client_port=8010-8011;

server_port=9012-9013

Session: 12345678

After that, the client starts to play the main video stream, which can be switched

at any time by the server. If it is a non-transparent switch, the SWITCHSIGNAL will

be sent at least 2000 milliseconds before switching.

C->S: PLAY rtsp://foo/twister RTSP/1.0

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 114

CSeq: 5

Range: npt=0-

Session: 12345678

S->C: RTSP/1.0 200 OK

CSeq: 5

Session: 12345678

[...]

S->C: SWITCHSIGNAL rtsp://foo/twister/video1 RTSP/1.0

CSeq: 33

Range: npt=47.234

RTP-Info: url=rtsp://foo/twister/video2

C->S: RTSP/1.0 200 OK

CSeq: 33

Critical Discussion Especially the domains of switching between different codecs

and spatial resolutions will offer a tremendous increase of the coverable bandwidth

range. Those domains can only be adressed by client non-transparent switching,

which demands some ways of communicating the server’s switching decision to the

client. This task can be solved by extending the widely used RTSP protocol.

RTP stream multiplexing or the setup of multiple UDP ports can be handled

by explicit SETUP of each promoted switch stream from the SDP description block.

Unfortunately, when thinking of multi-stream MPEG-4 like a background and a fore-

ground stream, there are no means to mark the streams connected to the same scene,

and various bandwidth variations thereof. The actual Internet draft only offers sup-

port for a single stream encoded in multiple versions. This description of switch sets

and multi-object scenes can be tackled by the notion of Digital Items covered in the

upcoming MPEG-21 standard [107, 108]. Although some first support for switch sets

is already given by a new generation of SDP which allows the addition of MPEG-21

Digital Items [109], further evaluation and analysis for completeness has to be done.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 115

Not only possible switch sets have to be sent, it is also important to communicate

which basic switching capabilities the client understands in general (temporal, SNR,

spatial or codec).

Still, for the simple use case with completely transparent switching, there is no

need to inform the client about the possible switch set, since this information is

completely useless for the client.

7.3 Extensions for RTCP-based Feedback

Standard RTCP does not offer any information about which data packets were lost,

just the measured packet loss ratio. Further, RTCP packets are only allowed to use

a maximum of five percent of the bandwidth and the feedback interval is set to a

minimum of five seconds.

To enable more accurate and immediate action on network problems, an extension

to RTCP for feedback was proposed by Ott et al [7]. In the best case, this allows

information on loss (NACK) or receipt (ACK) of RTP packets in one network round-

trip time. Important data can be retransmitted and/or the original stream can be

adapted to a lower bandwidth.

This Internet draft proposes three modes of operation depending on the group

size of participating hosts in an RTP setup:

1. The immediate feedback mode is used when the group size is small enough, so

that every receiving party has enough bandwidth to immediately send all RTCP

feedback packets.

The maximum group size for the immediate feedback mode is determined by

a number of parameters like the type of feedback used (ACK vs. NACK),

bandwidth, packet rate, packet loss probability and distribution, media type

and the codec.

ACKs (positive acknowledgements of received packets) are restricted to point-

to-point communications only, which means that a maximum of one client is

connected to the same server session.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 116

2. Within the early RTCP mode, the group size or other parameters do not allow

to react on each event that would be worth (or needed) to report. Still, the

receiver is allowed to send an RTCP packet before its regularly scheduled RTCP

interval. But to send further early packets, it has to wait until the next interval

starts. If the next interval is too distant in time, so that it renders unnecessary

to still send the back-held RTCP packet, this packet has to be discarded.

3. With a very large group size, it is no longer useful to provide feedback from

individual receivers at all. Here, normal rules for RTCP intervals and packaging

apply.

Figure 7.1: RTCP feedback modes of operation with growing group size

Figure 7.1 shows the three modes, where the transition is not fixed but dependent

of multiple parameters and the application requirements.

7.3.1 Feedback Types

The Internet draft not only introduces different possible sending modes of RTCP

packets, but also an additional RTCP packet extension to cover more detailed feed-

back on single entities like packets or video frames.

Feedback messages are classified into the following categories:

• Transport layer feedback messages for general purpose feedback information.

These messages are based on packets and RTP sequence numbers, so they are

independent from the particular codec or application.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 117

• Payload-specific feedback messages are highly dependent on the used payload

type, so they are codec specific. Possible feedback might be sent for Picture

Loss Indication (PLI), Slice Lost Indication (SLI) or Reference Picture Selection

Indication (RPSI).

RPSI is used to indicate the last valid reference frame available in the decoder.

With this knowledge, the server-side encoder can code and send the following

referencing frames based on an older reference frame, which will allow errorless

decoding at the client side. This will increase frame sizes because of reference

distance, but might still be more efficient than retransmitting the intermediate

reference frame. Further, this missing reference frame might not arrive in time

anyway.

• Application layer feedback messages are totally handled by the application and

are not further specified in the Internet draft nor in this thesis.

7.3.2 Packet Formats

7.3.2.1 Common Packet Format

All feedback messages are based on the generic RTCP packet format and extend it

as shown in Figure 7.2.

LengthV FMT PT

SSRC of Packet Sender

SSRC of Media Source

P

Feedback Control Information (FCI)

Figure 7.2: Common packet format for feedback messages

Payload Type (PT) (8 bits) The Payload Type is either 205 for transport layer

feedback messages (RTPFB) or 206 for payload-specific feedback messages (PSFB).

Feedback Message Type (FMT) (5 bits) With respect to the payload type,

the FMT is set according to Table 7.1. Application layer feedback messages are just

payload-specific messages with their FMT set to 15.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 118

Value Transport Layer Feedback Payload-Specific Feedback

1 generic NACK Picture Loss Indication (PLI)
2 generic ACK Slice Lost Indication (SLI)
3 unassigned Reference Picture Selection Indication (RPSI)
15 unassigned application layer feedback message
31 reserved reserved
rest unassigned unassigned

Table 7.1: RTCP feedback message types correlated with their payload types

7.3.2.2 Transport Layer Feedback Messages

Within the feedback for transport layer, only ACK and NACK messages are specified.

NACK Missing RTP sequence numbers are encoded in the feedback control infor-

mation block as shown in Figure 7.3. The PID is the Packet ID of the first lost packet,

where the bitmask of following lost packets (BLP) is a bitmask of the following 16

packets. Every lost packet is depicted by a set bit (1). The least significant bit stands

for packetPID+1, the most significant bit for packetPID+16.

LengthV FMT PT

SSRC of Packet Sender

SSRC of Media Source

P

PID BLP

Figure 7.3: NACK packet format for lost RTP sequences

ACK RTP sequence number acknowledgements are encoded as shown in Figure

7.4. The first received packet ID is stored in the PID field. Then the Range of ACKs

(R) flag switches the interpretation of the BLP field. If R = 1 then BLP stores the

number of consecutive packets to be ACKed, not including the first packet in PID. If

R = 0 then the BLP is used as a bitmap like in NACK messages, where a set bit (1)

means that the corresponding packet is ACK’d. Here, because the R flag needs one

bit, only 15 bits are available for consecutive packets packetPID+1 . . . packetPID+15.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 119

LengthV FMT PT

SSRC of Packet Sender

SSRC of Media Source

P

PID R BLP/#packets

Figure 7.4: ACK packet format for received RTP sequences

7.3.3 SDP Extensions

The RTCP feedback capability is expressed by an introduced attribute to SDP, which

is used within RTSP. According to our previous examples on SDP (see Section 6.3.1),

the media block of the video has the feedback attribute set.

m=video 0 RTP/AVP 96

b=AS:1514

a=rtpmap:96 MP4V-ES/90000

a=rtcp-fb:96 nack

7.4 Extensions for RTP Retransmission

The previously introduced RTCP feedback informs only about lost packets, but it

does not specify how a server should react on this packet loss.

The server could introduce forward error correction (FEC) and redundancy to

packets so that lost packets could be (partially) regenerated [110, 111]. This scheme

might be used for realtime video conferencing, where virtually no latency is tolerated,

but it will increase the packet size and hereby the needed overall bandwidth even in

an error free (or low-error) environment.

In the case of multimedia streaming, an initial delay of a few seconds is tolerated,

so this introduces some time gap where the server could intelligently resend the lost

packets. This only makes sense on very important frames like I-Frames and only, if

it is very likely that the resent packet arrives in time.

Some work is done in adding retransmission support to UDP on the application

layer [112], whereas the retransmissions are handled on an upper layer above RTP.

Still, this would only introduce a new layer with latencies and would define its own

protocol for packet handling.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 120

It is better if RTP is extended to directly support retransmission requests in RTCP

packets. These retransmissions are defined in another RTP extension called the RTP

retransmission payload format [6] proposed by Leon and Varsa.

This retransmission scheme fulfills the following requirements:

• It does not break general RTP and RTCP mechanisms.

• It is suitable for unicast and small multicast groups.

• It works with mixers and translators (see Section 6.2.1).

• It works with all known payload types.

• It allows the use of multiple payload types within a session.

• Sequence number preservation is guaranteed.

If we would just resend a packet with its original RTP sequence number, we

would break RTCP statistics. But every retransmitted packet has to store its old

RTP sequence number, so it can easily be re-inserted into the right place in the

received data stream. The optimal solution is to send the original and retransmission

packets in two separate streams. Hereby the retransmitted packets are not in the same

sequence number space as the normal data packets, so all original and retransmitted

packets can be distinguished and RTCP statistics are working properly.

7.4.1 Options for the Multiplexing Scheme

Still, these two streams may be sent either in two different sessions i.e. session-

multiplexing or multiplexed in the same session using different SSRCs, i.e. SSRC-

multiplexing.

7.4.1.1 Session Multiplexing

In session multiplexing, the original and retransmission streams are sent to different

network addresses and/or port numbers. This approach introduces more flexibility,

especially in a multicast scenario. Here every client can decide if it wants to subscribe

to the retransmission multicast group. It would also be possible for the server to

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 121

make availabe a multicast channel serving the original stream and multiple unicast

retransmission channels. Every client subscribes to its own retransmission channel

and is hereby not bothered by unneeded data.

Using separate sessions also simplifies the handling in the network, especially for

mixers, translators and also caching proxies. Either stream is using the same SSRC

value but different (dynamic) payload types.

When session multiplexing is used, every stream will receive separate RTCP re-

ceiver reports. This also allows to independently choose the RTCP bandwidth for

every stream.

7.4.1.2 SSRC Multiplexing

In SSRC multiplexing, both the original stream and the retransmissions are sent

together within one network connection. This saves network ports, which is especially

favourable for streaming servers and multimedia middleware which are involved in a

high number of concurrent sessions.

When these two streams are packed into one connection, they have to use different

SSRC values and different (dynamic) payload types.

7.4.2 Payload Format

RTP Header

OrigSeqNo

Original RTP Packet Payload

Figure 7.5: RTP retransmission payload format

The retransmission packet has to have the same timestamp as the original packet,

but its own RTP sequence number. Further, the old RTP sequence number of the

original packet is stored in the newly generated retransmission packet before the data

is attached (see Figure 7.5). Hereby every retransmission packet can be re-integrated

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 122

into the original packet stream, but is also uniquely identifiable because of its own

RTP sequence number.

7.4.3 SDP Extensions

To establish the retransmission stream for an original video stream, we have to com-

municate all details within the first RTSP describe. Therefore, the Session Description

Protocol (SDP, see Section 6.3.1) is enhanced by a new attribute :

a=fmtp <number>: apt=<apt-value>;rtx-time=<rtx-time-val>

apt= is used to refer to the original stream payload type. rtx-time= is optionally

added to inform the receiver of how long in milliseconds the server will try to resend a

packet, beginning with the first sending of the original packet. If this is omitted, the

maximum retransmission time is not defined or might be negotiated by other means.

7.4.3.1 SDP for Session Multiplexing

The following example shows one video with a retransmission stream. The original

video is described in its media block (m=) with the dynamic payload type 96. RTCP

Feedback is set to NACK (according to the above described SDP extensions). Then

a new media block for the retransmission stream with the dynamic payload type 97

follows. Note that the RTP clock rate has to be the same as for the original video.

MPEG-4 (MP4V-ES) uses 90000 ticks for one frame.

Finally, this retransmission stream is mapped to the original stream with:

a=fmtp:97 apt=96;rtx-time=3000

See the extended SDP example:

v=0

o=StreamingServer 1043923944 926516 IN IP4 143.205.122.54

c=IN IP4 143.205.122.54

m=video 0 RTP/AVP 96

a=rtpmap:96 MP4V-ES/90000

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 123

a=fmtp:96 profile-level-id=1

a=rtcp-fb:96 nack

m=video 0 RTP/AVPF 97

a=rtpmap:97 rtx/90000

a=fmtp:97 apt=96;rtx-time=3000

When multiple original video streams are described in one SDP, there has to be

a flow identification (FID) grouping. This is also allowed for the single video case as

shown in the following example. It establishes an FID group for both media blocks

with the media IDs 1 and 2 (eg. a=mid:1).

v=0

o=StreamingServer 1043923944 926516 IN IP4 143.205.122.54

c=IN IP4 143.205.122.54

a=group:FID 1 2

m=video 0 RTP/AVP 96

a=rtpmap:96 MP4V-ES/90000

a=fmtp:96 profile-level-id=1

a=rtcp-fb:96 nack

a=mid:1

m=video 0 RTP/AVPF 97

a=rtpmap:97 rtx/90000

a=fmtp:97 apt=96;rtx-time=3000

a=mid:2

7.4.3.2 SDP for SSRC Multiplexing

When both streams should be sent over the same RTP connection, there is only one

media block, which embodies two dynamic payload types.

m=video 0 RTP/AVP 96 97

All other parameters are the same as in the session multiplexing case.

v=0

o=StreamingServer 1043923944 926516 IN IP4 143.205.122.54

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 124

c=IN IP4 143.205.122.54

m=video 0 RTP/AVP 96 97

a=rtpmap:96 MP4V-ES/90000

a=fmtp:96 profile-level-id=1

a=rtcp-fb:96 nack

a=rtpmap:97 rtx/90000

a=fmtp:97 apt=96;rtx-time=3000

7.5 Evaluation of RTP/RTCP Extensions

7.5.1 Test Setup

The following evaluations are based on an implementation of the Internet draft for

RTP extensions for RTCP-based feedback, which was added to the UCL Common

Multimedia Library [113] of the University College London. Please find all implemen-

tation details in Appendix A.2.

The video stream used for the evaluation is the MPEG-4 reference stream “Big

Show Both” with 13,000 frames and a frame rate of 25 fps in CIF resolution. The

average bitrate is 400 kbps, with quantization levels of 28 for B-frames and 16 for I-

and P-frames. This leads to an average PSNR value of 27.8 dB. See Figure 7.6 for

the unadapted PSNR chart for the encoded stream. To gain temporal scalability, the

stream was encoded with four B-frames between I- and P-frames in each one-second

GOP, yielding a fixed frame pattern of IBBBBPBBBBPBBBBPBBBBPBBBB.

All of the following measurements were performed on a traffic-shaped network,

which changes the available bandwidth every 30 seconds within a 20% range. Those

20% are reasonable eg. on the last mile caused by some cross traffic like background

email checking. Starting with 410 kbps, bandwidth is reduced to 370 kbps after 30

seconds, then degraded to a minimum of 320 kbps, which enforces 20% quality re-

duction compared to the original stream; subsequently, bandwidth is increased to 370

kbps and, finally, back to 410 kbps. This bandwidth fluctuation pattern is repeated

within an infinite loop, yielding an average available bandwidth of about 350 kbps.

Note that, without retransmission, arbitrary frames are lost, which may also in-

clude important I- and P-frames. This might make it impossible to decode even

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 125

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450

P
S

N
R

 [d
B

]

Playout seconds

displayed PSNR
avg PSNR: 27.79 dB

Figure 7.6: PSNR values for the unadapted video with 400 kbps

correctly received frames. This fact is displayed in the following graphs where we

compare the received number of frames versus the number of decodable frames per

second, which might largely diverge, if a reference frame was missing. Thus, our

streaming system can retransmit I- and P-frames to allow for optimum decoding

results at the receiver.

Adaptation and quality reduction is shown by displaying the PSNR loss in dB

with respect to the unadapted stream shown in Figure 7.6. So the less adaptation is

done to the video, the more we converge to the zero-difference line.

7.5.2 Basic RTCP Feedback

If the sender has to react to changing network conditions, feedback from the receiver

is indispensable. The standard RTCP receiver report (see Section 6.2.3) includes the

percentage of lost packets since the last RTCP receiver report and the number of

totally lost and sent packets since the beginning of the session.

Those reports are sent minimally every 5 seconds and are not allowed to exceed 5%

of the overall corresponding RTP session traffic. With increasing network utilization

and the amount of participating senders/receivers in an RTP session, the reporting

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 126

interval will increase or RTCP receiver reports may even be turned off. Still, appli-

cations can use this rarely sent information to adjust their streaming bandwidth.

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450

B
an

dw
id

th
 [k

bp
s]

Streaming seconds

really recv’d BW
measured BW

avg recv’d BW: 347.84 kbps

Figure 7.7: Bandwidth measurements with standard RTCP feedback

Fig. 7.7 nicely shows the steps of the traffic shaper and the late reaction on

bandwidth changes due to long intervals between RTCP reports. Furthermore, all

estimations on available bandwidth are too high, further aggravating packet loss. This

fact and the unavailability of retransmission results in adaptation rates of up to 30%.

Fig. 7.8 shows the received frames per second, but since some referencing frames like

I- and P-frames are also missing, the really displayable number of frames per second

decreases substatially. The average displayed frame rate is 15.7 fps. According to

Fig. 7.9, we lose up to 16 dB PSNR quality because of lost I- and P-frames. The

average quality reduction is about 5.6 dB.

7.5.3 RTCP-based Feedback Extension

For this evaluation, we only use the immediate feedback mode in a unicast scenario

with one client and one server. The feedback type employed is the simple transport

layer feedback.

Fig. 7.10 again shows the steps of the traffic shaper and the better reaction on

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 127

 0

 5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

F
ra

m
e

ra
te

 [f
ps

]

Streaming seconds

recv’d FPS
displayed FPS

avg displayed FPS: 15.73

Figure 7.8: Frame rate adjustments with standard RTCP feedback

bandwidth changes because of the shortened RTCP reporting intervals. Also, the

bandwidth fluctuations are encountered better. Still, the unavailability of retrans-

mission leads to an average frame rate of 16.6 fps (see Fig. 7.11). According to

Fig. 7.12, we lose up to 14 dB PSNR quality because of lost I- and P-frames. The

average quality reduction is about 3.6 dB. Hence, the extended RTCP feedback allows

a quality increase of 2 dB under the same network conditions.

7.5.4 RTP Retransmission

With retransmission turned on, the measured bandwidth steps are identical to those

measured with immediate feedback in Fig. 7.10, but since we use retransmission on

all packets (as long as they arrive in time), we obtain a higher frame rate of 19.1 fps

(see Fig. 7.13). According to Fig. 7.14, we only lose up to 5 dB PSNR quality since

we retransmit all lost I- and P-frames. The average quality reduction is less than 1.2

dB. Eventually, under the same network conditions, we achieve an average quality

increase of 2.4 dB just by retransmission and an average quality increase of 4.4 dB as

compared to the standard RTCP and RTP, without extensions.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 128

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

0 50 100 150 200 250 300 350 400 450

P
S

N
R

 [d
B

]

Playout seconds

PSNR loss by adaptation
avg PSNR loss: -5.58 dB

Figure 7.9: Quality loss with standard RTCP feedback

7.6 Conclusion and Future Work

The two proposed IETF drafts on extended RTP feedback and retransmission have

proven to offer substantial benefit for unicast streaming environments over best effort

networks employing IP. Further research and evaluation has to be done in the area of

multicast scenarios and with multiple concurrent streams.

Mainly, we have to evaluate the efficacy of feedback and retransmission, as com-

pared to other quality-ensuring measures like forward error correction (FEC) or

adding redundancy to packets, so that lost packets can be (partially) regenerated

[110, 111]. Still, advantages of packet retransmission will always be the low complex-

ity on the receiver side and the bandwidth efficiency in a nearly error-free network.

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 129

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450

B
an

dw
id

th
 [k

bp
s]

Streaming seconds

really recv’d BW
measured BW

avg recv’d BW: 348.14 kbps

Figure 7.10: Bandwidth measurements with extended RTCP feedback

 0

 5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

F
ra

m
e

ra
te

 [f
ps

]

Streaming seconds

recv’d FPS
displayed FPS

avg displayed FPS: 16.63

Figure 7.11: Frame rate adjustments with extended RTCP feedback

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 130

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

0 50 100 150 200 250 300 350 400 450

P
S

N
R

 [d
B

]

Playout seconds

PSNR loss by adaptation
avg PSNR loss: -3.60 dB

Figure 7.12: Quality loss with extended RTCP feedback

 0

 5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

F
ra

m
e

ra
te

 [f
ps

]

Streaming seconds

recv’d FPS
displayed FPS

avg displayed FPS: 19.13

Figure 7.13: Frame rate adjustments with retransmissions

CHAPTER 7. EXTENSIONS TO RTSP, RTP AND RTCP 131

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

0 50 100 150 200 250 300 350 400 450

P
S

N
R

 [d
B

]

Playout seconds

PSNR loss by adaptation
avg PSNR loss: -1.16 dB

Figure 7.14: Quality loss after decoded retransmissions

CHAPTER

8 ViTooKi - The Video

ToolKit

ViTooKi – the Video-ToolKit [56] is an open source client/server framework which

was developed at our department. It is capable of sending, adapting and displaying

MPEG-1/2/4 video streams, streaming and playing MP3 audio streams, and opens

container formats like .mp4 or .avi. It comes with full support for adaptive standard

compliant multimedia streaming and proxy caching. It consists of a multi-platform

core library and various applications using this ViTooKi core library. The core library

is using FFmpeg [65] and/or XviD [66] , therefore it is very open for extensions for

new video and audio formats and container formats.

Other toolkit projects on video streaming are MPEG4IP [114], Helix [115] and

VideoLAN [116], none of them offers the needed capabilities nor the necessary combi-

nations of dynamic adaptation and stream switching and retransmission. They also

ignore the state of the client-side buffer. Such a buffer-aware architecture was pub-

lished in [117]. It adds buffers for the displaying engine to compensate decoding jitter

and implements frame dropping, but does not support stream switching or packet

retransmission. ViTooKi implements all of these extensions and features, which were

also discussed in detail prior in this thesis.

One of the use cases for ViTooKi, and the topic of Peter Schojer’s Ph.D. the-

sis [118], is a caching proxy which, instead of deleting outdated content to reduce

the needed cache size, first tries to reduce the media size by quality reduction [64].

Other available applications are an adaptive streaming server, an MPEG-21 compliant

multivideo player with configurable terminal capabilities, a multivideo transcoder, a

DVD ripper and an MPEG-7 video annotation tool. Many active student projects are

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 133

constantly increasing the amount of available tools, all leveraging the simple-to-use

ViTooKi library. Appendix B lists some convenience functions which can be leveraged

for statistical analysis, frame prioritizations and quality measurements.

This chapter will explain the ViTooKi design in detail, including the integration

of all the previously introduced technologies like smooth buffer streaming, retrans-

missions, in-stream adaptation and stream switching. Adaptation methods are im-

plemented as exchangeable and chainable Adaptators as described in Section 3.3.2.

In ViTooKi, those adaptor chains are used eg. on the server/proxy side to transcode

videos in real-time to fit the terminal properties specified by a client (eg. the display

resolution) or to adjust to changing network bandwidths. Transcoding implementa-

tions exist for the temporal (B- and P-frame dropping), spatial (resolution), quality

domain (quantization) and color reduction.

8.1 Generic Streaming Environment

Figure 8.1 shows the basic idea behind a client-server streaming architecture with

all directly involved classes from the ViTooKi library. First, we will describe the

server side. There is an IO Input Class which reads frame by frame from an MPEG-4

elementary stream by using the getFrame() method. Those frames are passed to

the DataChannel, which is connected to an arbitrary number of attached DataSinks,

which represent the open client connections.

The DataChannel passes each frame to its global adaptors, if there are any. Those

adaptors might do grayscaling or could generate various statistics on by-passing

frames (see Figure 8.2 for all actually available adaptors within their class hierar-

chies).

A somehow adapted (but maybe also unchanged) frame is then passed to each

DataSinks’ local adaptors. This can be used to post-processthe frames especially for

this connected client. After this “private” adaptation, the frame is passed to the IO

Output class via the IO::writeFrame() method. The output can be directed to a

file storage output, but in the streaming case, a network output class sends data via

the network to reach a remote client.

On the client side, everything is more or less the same but inversed. The frame

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 134

Figure 8.1: Class overview for client-server architecture in ViTooKi

is received by the IO Input and then passed to the DataChannel via the getFrame

method. After applying some global adaptors, the frame is handed over to the local

adaptors. For a video player, this might first be a synchronization adaptor, delaying

further processing according to the frame’s presentation timestamp, and after that, a

decoding adaptor, to transform the frame from its compressed domain into raw YUV.

This frame is processed by the adaptors and then passed to the IO Output class via

the IO::writeFrame() method. IO Output finally displays the frame on the screen.

8.1.1 Server-Side RTP Class

The following subsections describe a specialized IO class which integrates RTP sup-

port according to RFC 1889 [94] into ViTooKi for both sending and receiving. Low-

level RTP communication is based on the UCL Common Multimedia Library [113],

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 135

Adaptor

FrameCounter

Forwarder

ESSynchronizer

AdaptorChain

GlobalTimer

StatisticsUpdater

TimeMeasureAdaptor

AudioAdaptor

VideoAdaptor

VideoAdaptorChain

AudioAdaptorChain

ColorReduction

MPGSDLRenderer

QualityReduction

SpatialReduction

MP4AudioDecoder

MP4Decoder

MP4Encoder

PSNR

TemporalAdaptor StrongTemporalAdapt.

YUVColorReduction

YUVSpatialReduction

Renderer

YUVDump

FrameTypeCounter

SharedAdaptor

YUVScalingAdaptor

CuttingAdaptor

Figure 8.2: ViTooKi adaptors within their class hierarchies

which was extended by extra features like NACK/ACK feedback [7] and retransmis-

sion [6]. Those extensions are described in Section 7.3 and 7.4 and their performance

was analyzed in Section 7.5.

As described in the general overview of ViTooKi, every stream is handled by a

DataChannel which runs as a seperate posix thread. On the server-side, after reading

an encoded MPEG-4 frame from a file, this frame is passed to a DataSink with its

attached Output, which is our Rtp class. Rtp::writeFrame() is then called with

the encoded MPEG-4 frame. Figure 8.3 shows that this frame is packetized in the

Packetization Engine and is, accoring to RFC 3016 [96], fragmented into seperate

access units of Maximum Transfer Unit (MTU) size of the underlying network (eg.

ethernet uses 1500 bytes). Those network packets do not only store the payload, but

also such information like the frame type, presentation timestamp and frame priority

for dropping behavior (see Chapter 4). They are inserted in a list, called preQ, sorted

by their timestamps.

With the initialization of the Rtp class, a seperate sendThread is started. This

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 136

Figure 8.3: Concurrent threads at the server-side of the Rtp class

thread always tries to pop packets out of the preQ. According to the packets’ priority

and the measured available network bandwidth (for more details see section 8.2.1),

this popped packet is dropped by the smoothing & adaptation engine or sent out on

the network. If a packet is sent out, it will be stored into the sendQ, which is used for

possible retransmissions and statistics. Before the sendThread tries to pop the next

packet, it sleeps a calculated amount of time. Obeying these time slots, only a cer-

tain amount of packets is sent out in one streamout second (Ssec). This amount will

then roughly match the reqested streamout rate for this second. The exact streamout

rate will not be met all times because of packet size boundaries, so the used band-

width is always varying within one MTU (maximum transfer unit). Further, since

TCP-friendly behaviour1 is envisioned, the available bandwidth is always re-measured

and the streamout bandwidth is adjusted in a AIMD fashion (additive increase, multi-

plicative decrease). This leads even more to a spiky streamout bandwidth and shortly

delayed reaction.

The sendThread also checks the network for incoming RTP feedback messages.

If retransmission is requested for lost packets, they are picked out of the sendQ and

are reinserted into the preQ, again sorted by their timestamps, which are always

lower than any other packet already stored in the preQ. By using the timestamps,

1TCP-friendly means to be cooperative to other long-term high bandwidth connections like eg.
ftp

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 137

retransmission packets are sorted among each other as well. This prioritization al-

lows the immediate and in-time send-out of urgently needed data. Since we assume

only a low need of retransmissions, we always resend requested packets if they could

arrive in-time, more or less ignoring the increasing bandwidth hereof. They are not

adapted within the smoothing & adaptation engine, because we do not want to break

dependencies of partially received full frames, where eg. only one single packet is

missing. This works well, since the packet loss is detected anyway and leads to future

adaptation and hereby reaches network stabilization very soon.

8.1.2 Client-Side RTP Class

At the client side, there is a recvThread which checks for incoming RTP packets,

which might be either new data or retransmitted packets (see Figure 8.4).

Figure 8.4: Concurrent threads at the client side of the Rtp class

Every received packet is inserted into the preQ, according to its timestamp. The

recvThread is keeping track of the last incoming RTP sequence number seqNon, so if

a new packet arrives and it’s RTP sequence number seqNom,m > n + 1 is not the

direct successor (seqNon+1), an immediate feedback RTCP packet is generated and

the server is informed of the missing packet(s) seqNon+1 . . . seqNom−1. This silently

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 138

ignores the fact that UDP does not guarantee in-order arrival of packets and can

be solved by an introduced timer event, which waits a certain time before sending

the RTCP feedback. Maybe the missing packet will arrive during this configurable

period of time. Still, according to [112], receiving out of order messages is very rare

in practice, so receiving a message with a too high sequence number is a good sign

that the expected message was unrecoverably lost.

At the same time when the recvThread is started, the concurrent DataChannel

thread tries to extract the very first frame with the Rtp::getFrame() method. Ob-

viously, in the beginning, no packets have arrived yet, so the DataChannel thread

goes into prebuffering state and waits for a definable amount of time (normally 8

seconds). After that, it assumes, that the recvThread has stored a significant number

of packets in the preQ. Then the DataChannel thread continues and starts to pop

packets from the preQ. Whenever the DataChannel thread runs out of data again,

a new prebuffering period is introduced, but this also means a complete blocking of

the client side player and is hereby a highly unwanted scenario. To avoid this buffer

underflow, server-side adaptation and switching is applied.

Since getFrame() has to return a full and complete (decodable) frame, we have

to combine the network packets into one single frame again. This is done by reading

the packets’ timestamps and their final marker bit. If any of the consecutive packets

is missing, the full frame is discarded and the getFrame() method is called again to

extract the next full frame. If an error occurs at this point, it is definitely too late for

retransmission, since the current frame has to be decoded and displayed next. Still,

the code could be extended by some kind of forward error correction like Priority

Encoding Transmission (PET) [110, 111] or even incomplete frames could be passed

to the decoder in favor of independently decodable video packets based on MPEG-4

video slice bounds [29] (though this feature is neither implemented in the FFmpeg

nor XviD MPEG-4 codec implementation).

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 139

8.2 Bandwidth Smoothing and Adaptation

8.2.1 Bandwidth Consumption

To avoid client buffer overrun or underrun, the server side RTP class tries to send

out packets for each streamout second Ssecn with a certain streamout bandwidth

streamBW , which was calculated according to the proposed algorithm in Section

2.4.

Since this streamBW is not guaranteed on best-effort networks, we first have to

measure the really available real netBW . By receiving NACKs from the client side

and looking up the according network packets from the sendQ, we can subtract the

not received packet sizes from the sent packet sizes. Further, we have to make sure,

that we only subtract NACKs from the according streamout second Ssecn. So SSPn

denotes the set of all packets pi in a certain Ssecn and SSLPn the set of all lost

packets qj in Ssecn, where obviously SSLPn ⊆ SSPn.

real netBWSsecn =

numFrm(SSPn)∑
i=1

size(pi)−
numFrm(SSLPn)∑

j=1

size(qj)

Assuming that no NACK packets are lost themselves on their way from the client

to the server2, after adding some network delay, we have a very exact knowledge of

the real netBW for Ssecn. Since we have to rely on stable measurements, we wait a

full second until we really take the values for further calculations.

With this knowledge of this already outdated real netBW , we want to set the

new streamout rate. Generally, we could fully take the resulting (but outdated)

real netBW as the new netBW used as the new streamout rate for Ssecn+1.

netBWSsecn+1 = real netBWSsecn−1

This approach would have two big disadvantages:

• Since we always only measure sent packet sizes minus data loss, we cannot

detect an increase of available bandwidth.

2Those NACK packets are sent from the client to the server, so it is the other direction, which is
very likely uncongested.

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 140

• Other high bandwidth streams could starve, since we would always try to fill

up the available bandwidth as much as possible. This problem arises especially

in the Internet, where TCP traffic would be virtually eliminated by greedy and

ruthless UDP bursts. To avoid this, we need to be TCP friendly [119].

Many approaches compete to be the most TCP-friendly congestion control [120,

121, 122, 123, 124, 125]. Algorithmic complexity and environmental restrictions of the

above cited TCP-friendly algorithms forced us to refrain from their usage. Find a more

detailed comparison and critical analysis of different TCP friendly congestion control

approaches in [126] and [127]. With the following approach, a general TCP friendliness

could be achieved. Although TCP uses additive increase and multiplicative decrease

(AIMD) on bandwidth adjustment, we implemented a three-level adjustment scheme

which was proposed coarsly similar in [128] and [129].

The ViTooKi network implementation uses packet loss thresholds to adjust the

future network bandwidth estimation. In contrast to wireless networks, on wired

networks, virtually no packet loss is caused by errors on the cable. So packet loss

is always a sign for congestion and we have to react by reducing our streamout

bandwidth. When modern Internet routers are available on the packets’ way to their

destination, those routers can even drop some packets in adavance as a forewarning,

whenever the fill level of their internal packet queues are getting full. This is called

random early detection (RED) [130]. So when routers are dropping arbitrary packets

in advance, the ViTooKi server is able to adjust the netBW (and the data rate by

adaptation) even before the network really heavily congests and hereby also avoids

unnecessary retransmissions.

If the packet loss ratio is above a critical value, we decrease the netBW for Ssecn+1

by a substatial, but not too large percentage of only 20% (TCP would drop down by

50%). If packet loss is below a certain value (eg. 1%), we increase our netBW , which

allows us to better use available bandwidth. If packet loss is steady within acceptable

bounds, we keep our bandwidth steady too. Following this strategy over a longer

period of time, we converge to the well-known TCP sawtooth graph for bandwidth,

but with smaller drop-downs. On the other hand we are less greedy and introduce

plateaus and steps. This allows us to maintain a higher and more stable average

bandwidth (see Figure 8.5).

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 141

Figure 8.5: TCP sawtooth vs. our TCP friendly approach

8.2.2 Adaptation by B-frame Dropping

Calculating and adjusting the netBW to fit the real network bandwidth is an impor-

tant issue. Still, if we cannot stream with the precalculated and needed streamBW ,

we will run out of data on the client side sooner or later. Therefore we have to adapt

the data meant for the next streamout second to exactly match the netBW . This

allows the server to send out enough packets worth for one streamout second, but

with less “quality”. All further streamout seconds are totally independent from this

adaptation, and the basis of the pre-calculated streamBW will allow that the buffer

bounds on the client will not be endangered by any means.

As discussed in Section 3.2.1, the cheapest and fastest adaptation is B-frame

dropping. This could simply mean not to stream out 30 frames per second with the

pattern IBBPBBPBBPBBPBBPBBPBBPBBPBBPBB, but to drop 30% of the B-frames, by

any of the previously discussed frame prioritization algorithms, where unique priority

values are assigned to the frames.

8.2.2.1 Priority-based Dropping Using a Hint File

Since there are better methods for gaining good priority values than simple timely

uniform distribution, these (mostly off-line calculated) priority values can be stored

in special hint-files. When using good hint-files, the system knows even better which

frames can be dropped without losing too much quality.

Eg. those hint-files can be generated with a quality aware algorithm (QCTVA)

(see Section 4.5.5), which works in the uncompressed domain on the basis of PSNR

values. This file could also be written by an MPEG-7 based tool to annotate metadata

information. Whenever streamout starts, the frames are dropped or kept according

to their priority values by using the ViTooKi smoothing & adaptation engine.

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 142

Timely uniform distribution of dropped frames is relatively cheap in compari-

son to other “intelligent” off-line built prioritization algorithms and it avoids chop-

piness. The following example pattern nicely shows the timely uniform dropping

behaviour: IB-PB-PB-PB-PB-PB-PB-PB-PB-PB-. This is the default prioritization al-

gorithm within ViTooKi, if no pre-calculated priority hint-file is available. Section

4.5.2 shows, how this timely distributed dropping behaviour is simply mapped to

unique priority values. The following approach always uses prioritized frames, no

matter where the priorities stem from.

Since the server-side RTP class knows about all packets’ priorities in the preQ, it

is easy to extract those packets that should be sent out in the next streamout second.

Further, the unimportant packets are dropped.

8.2.2.2 The Smoothing and Adaptation Engine

For adaptation within ViTooKi, the problem of different frame sizes and varying

bitsizes of video seconds (V secBS) has to be tackled, since those variances only

average out to streamBW for the full video. According to Section 2.2.3, if the

pre-calculated streamBW is streamed out regularily every second, sending as many

frames as possible, the client will be able to display the full stream (assuming a large

enough prefetch time). One streamout second (Ssec) might contain parts of various

V secs, depending on each V sec′s bitsize V secBS. For adaptation, the system has to

adapt each streamout second (Ssec) to fit into the given netBW , which will finally

reduce the overall average bandwidth.

According to the example in Figure 8.6, we assume a streamBW of 137 kbps but

the measured network bandwidth is only 110 kbps. So to fit the available netBW ,

the data has to be reduced by 20%. The frames are sorted by priorities and, in a loop,

the highest priority numbers are chopped off until the netBW can be sufficed. The

smoothing & adaptation engine does not really drop frames immediately, but only

marks them for dropping. When a frame should be sent out, a special dropMe flag

stored with this frame is checked for the final decision.

Please note, that the prior discussion and Figure 8.6 always assumed priority

values and adaptation of full frames. Because of the underlying network, the preQ

only stores the already demultiplexed packets at MTU size, so all full frames are split

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 143

Figure 8.6: Priority-based B-frame adaptation

up into pieces. Since adaptation has to happen on a frame-by-frame basis, multiple

packets which belong together have to be all marked for dropping. This gets even

more complicated by the fact, that some frames might be already partially sent,

so the remaining packets have to be excluded from adaptation to minimize wasted

bandwidth. Setting up those rules, the remaining packets of already partially dropped

frames have to be forcibly marked. This assures, that only full frames are either sent

out or dropped.

8.2.3 Retransmission of Lost Packets

For retransmission, the NACK messages introduced in Section 7.3 are used by the

client-side to send retransmission requests and the extension on RTP retransmission

discussed in Section 7.4 is used by the server-side to resend important packets.

Packet loss on the client-side is detected by missing RTP sequence numbers, so

a NACK packet is sent out. The server inserts the retransmission packet depending

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 144

on its timestamp, which determines if it will still arrive on time. If any retransmit-

ted packet gets lost, the client has to re-request this packet again. The loss of a

retransmission packet can be identified either by a missing RTP sequence number in

the retransmission stream, or – if already the according NACK request was lost –

by a timer on the retransmission request. Re-requests of lost retransmission packets

are done on the original stream’s feedback channel. If there would be NACKs and

re-retransmissions on the retransmission channel itself, the doubly sent packets would

loose their original RTP sequence number themselves and could not be integrated into

the original stream properly. Further they would break the RTCP network statistics

since the accumulated bitrate would be an inseparable combination of normal data

and retransmission packets.

Still, it is important for “fair use” bandwidth sharing or bandwidth reservations,

to always see the cumulated bandwidth of the original bitrate and the bitrate needed

for retransmissions. So ViTooKi has to adapt the original stream even more, in order

to make room for the necessary retransmissions (retransmissions are always sent out

with high priority). It is assumed, that after adapting to the newly calculated band-

width, the network stabilizes again and the number of retransmissions is hereby also

decreasing. When the newly calculated network bandwidth fits the real bandwidth

again, no packet loss will occur.

8.2.4 Adaptation vs. Buffer Management

8.2.4.1 Client-Side Buffer

The server side is capable of estimating the buffer fill level of the client side, since

it knows which packets (respectively their timestamps) were already sent out. There

is still some uncertainty if a packet has already reached the client and was stored in

the client’s preQ. To solve that, the system needs quite adequate estimates on the

network delay, which can be calculated on the basis of NACK packets for already

sent packets. Exactly speaking, the packet’s sendout time and the incoming NACK

packet only allows calculation of the full round-trip time (RTT), but this is taken as

a conservative approach. The general formula delay = RTT/2 does not hold anyway,

if the network is congested only in one direction. But exactly this situation is very

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 145

likely to happen for streaming, since the upstream channel is only used for RTCP

packets whereas the high data load is congesting the downstream channel. Because

of this, some unexactness is accepted and the full RTT is taken into account.

Buf aheadn = (last sent timestamp−RTT)− Ssecn

Buf aheadn reflects the amount of seconds of still stored data in the client buffer,

because the server’s Ssecn is taken as the equivalent of the client’s actual playout

time Psecn. last sent timestamp in the above formula is considered as a floating

point number describing the presentation time in seconds of the currently sent out

frame.

8.2.4.2 Streaming Strategies

For the following, the pre-calculated streamBW is used as the wanted streamout rate,

whereas netBW depicts the really available network bandwidth, which is normally

varying within a certain range around the streamBW . Taking into account not

only the ability to adapt the data to meet a certain netBW , but also the previously

discussed client buffer fill level, there are various choices with the available network

bandwidth:

Available netBW exceeds streamBW If the available netBW exceeds

streamBW , instead of only sending out streamBW and leave some bandwidth un-

used, ViTooKi sends more than streamBW , which will fill up the client buffer faster.

Nevertheless, if the available network bandwidth is extremely high, our TCP-friendly

system will not use all of it, just a little more than streamBW (eg. +15%). This

scenario will happen on a local network, where eg. a 390 kbps video is watched by

the user. An intelligent system (like ours) will not “stream” with the maximum of eg.

1000 kbps, since this would degrade streaming to normal file transfer and obviously

would require enormous client buffer capacities.

Still, under perfect network conditions, when the streamBW is always exceeded

even by a little, this will lead to high and overfull buffers, too. Keeping the buffer

fill level always very high does not break any of the previously defined and calculated

streamBW requirements and obviously still guarantees seamless displaying of the

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 146

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140
 0

 1000

 2000

 3000

 4000

 5000

B
an

dw
id

th
 [k

bp
s]

C
lie

nt
 B

uf
fe

r
[k

bi
ts

]

Streamout seconds

netBW
client buffer
streamBW

Figure 8.7: Overfull buffers force netBW reduction

video. Only if the buffer fill level reaches a high-water level, the streamout rate has

to be massively reduced to not completely over-fill the buffers 3.

Figure 8.7 shows a streamout scenario with a streamBW of 390 kbps. Since the

network is never congested in this scenario, netBW is increased to a steady level of

450 kbps. Buffers are filled very fast and at Ssec67 they reach the high-water level

of 90%. Therefore netBW is reduced drastically to drain buffers again until they fall

below 70% filling level. After that, netBW is reset to the old value of 450 kbps. The

same procedure is triggered again at Ssec95.

Even this heavy draining phase will not break the streamBW requirements, as

long as the buffers are maximally drained by the same amount of the previously

extra-streamed data. So draining is safe as long the following equation holds:

3Please note, that this strategy provides more stability over possibly future network fluctuations,
but an almost full buffer also introduces long delays until the buffer is played out, whenever the
system performs stream switching.

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 147

n∑

k=1

streamBW ≤
m∑

k=1

(streamBW + Einck) +
n∑

k=m+1

(streamBW − Edeck), ∀m < n

In the time from Ssec1 . . . Ssecn, instead of always streaming out streamBW ,

if netBW allows it, the system first increases each streamBW by some amount

Einck in the time from Ssec1 . . . Ssecm, then the streaming rate can be dropped to

streamBW−Edeck later from Ssecm+1 . . . Ssecn, so that the overall sum is still larger

or equal to always streaming the exact streamBW .

Available netBW is below streamBW If netBW falls below streamBW , and

the client buffer is in a medium fill state, the system adapts to meet the netBW as

described in Section 2.2.3. If the client buffer is already overly full, it just sends out

unadapted data up to netBW kbits. Apparently, this second approach will drain the

client buffer faster but video quality is kept constant. This also envisions the fact

that people are distracted by too frequent changes in quality [85]. This draining will

also not break the requirements, as long as there was a high bandwidth phase before

and the above formula holds.

Fill up Buffers regardless to available netBW To interact even more intel-

ligently with the client buffer, the system will also adapt the data by some small

percentage even if netBW equals streamBW . This is useful whenever the client-side

buffer is below a low-level watermark and buffer underrun is near. By this the system

sends the exact netBW , but more (adapted) V secs. This will fill up the client buffer

even more (V sec-wise, not byte-wise) and brings back the client buffer in a stable

state faster.

8.3 Switching

To prepare a multimedia presentation for stream switching, several quality versions

of this video have to be encoded. Since the ViTooKi MuViSever is measuring the

available network every second, it decides to switch down, whenever there is too

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 148

much adaptation needed (eg. it is not useful to drop more than 10 fps) or the actual

netBW falls below 75% of the actual stream’s bandwidth. It decides to switch up

whenever the bandwidth is 30% above the actual stream’s streamBW .

Whenever available bandwidth is above or below these thresholds, the

CacheManager class, which controls all available video streams, is queried for the

corresponding MetaObject of the actually streamed video, whereas this MetaObject

stores all available versions of the stream, the so-called switch set. If another version

fits better to the newly measured bandwidth, the next possible switchpoint, reflected

by an I-frame, is searched. Then the old stream is continued to be streamed out until

the switchpoint is reached and all old frames until then are sent out to the client (see

Figure 8.8). After that, the new stream is set active, a header frame with the new

decoder configuration is sent and then the server continues with the next I-frame.

Figure 8.8: Streams are switched at the next available I-frame

This is done fully server-driven, so the client only recognizes stream switching by

receiving a header frame with the new decoder configuration. MuViPlayer resets the

decoder and, if the new stream is coded in a different resolution, it does the necessary

up-scaling from eg. QCIF to CIF, so the user is distracted as little as possible.

As depicted in Figure 8.8, the B-frame directly after the new I-frame would need

a second reference frame, which would be only available from the new stream, but

there is only the old P-frame at hand, instead. Fortunately, this is not so problematic

as long as both streams use the same frame pattern and the P-frames are therefore at

the same positions and are coding the same visual information. Only the quantized

quality differs, so in case of downswitching we get even better results when using

motion vector references to higher quality macro blocks. Note, that if the P-frames

CHAPTER 8. VITOOKI - THE VIDEO TOOLKIT 149

are on different positions in the streams, this might lead to remarkable drift on the

wrongly coded motion vectors in this B-frame. For all used switch sets, the coded

frame patterns where the same, only quantization was changed, so no drift problems

could occur.

CHAPTER

9 Conclusion and Future

Work

This work has evaluated different aspects of video streaming in best effort networks,

not only as self-standing topics but – as a novelty – also combined together in a fully

functional streaming environment.

Starting with a basic analysis of today’s variable bitrate encoding and the associ-

ated problems of a smooth and buffer-aware streamout, a new algorithm for calcula-

tion of a constant streamout bandwidth under acceptance of a certain prefetching time

was proposed. Notably, this calculated streamout bandwidth recognizably lies above

the average bandwidth, since the average bandwidth is is not enough for constant

streamout and leads to buffer underrun.

Using this streamout bandwidth will not be possible at all times in a best effort

network, where packet loss and network congestion occur. Only different ways of

adaptation can help to reduce the needed bandwidth and hereby prevent buffer un-

derflows. Multiple approaches of scalability for in-stream adaptation were discussed,

and temporal scalability with B-frame dropping, being the most commonly available

scalability enhancement to modern video codecs, was analyzed in detail. Not only the

different numbers of B-frames between reference frames and their quantization values

were evaluated, but also different ways of prioritization in terms of visual quality or

timely uniform distribution were discussed and measured.

For very high and long-term bandwidth fluctuations, the limitations of in-stream

adaptation were outlined, and an additional coarse-grained method of adaptation was

introduced. Stream switching, also a well-known approach for common streaming

systems like RealPlayer, was analyzed. Feasible stream combinations for switch sets

CHAPTER 9. CONCLUSION AND FUTURE WORK 151

were proposed. Measurements on congested networks showed the necessity of stream

switching to prevent buffer underflow. Further, combining finer-grained adaptation

by B-frame dropping with coarse-grained adaptation by stream switching proved to

be even more successful in stabilizing the client buffer and to provide a better visual

quality than simple stream switching.

All streaming was performed using Internet standards like RTSP, RTP and RTCP.

Some shortcomings in those protocols were discussed and new extensions to RTP and

RTCP where evaluated in terms of their performance in depth. The extensions for

immediate RTCP feedback and RTP retransmission greatly improve visual quality

of the decodable video, and hereby are essential extensions for all above technologies

like fine- and coarse-grained adaptation and buffer smoothing. Especially immediate

RTCP feedback is necessary to adjust the streamout rate in a TCP-friendly way

and to react fastly and accurately to bandwidth changes with different adaptation

strategies.

Future work will be the large-scale evaluation of the ViTooKi multimedia stream-

ing environment, as an incorporation of the combined streaming strategies and mul-

tidimensional adaptation within a real streaming environment on the Internet. Real

users will have to evaluate the qualitative improvements of different prioritization

schemes and adaptation methods. In an already started new project, future top-

ics like wireless network support, where streaming is subject to very high and fast

bandwidth fluctuations, will be discussed. Parallel streaming of many concurrently

connected clients has to be evaluated as well. This will further raise the question

of adaptation and retransmission in multicast networks, where multiple clients are

connected to a single streaming server. This includes analysis of layered multicast

streaming and per-client or shared retransmission channels.

APPENDIX

A Implementation Details

A.1 Recursive Generation of Timely Uniform Dis-

tributed Priority Values

The following algorithm is used for timely uniform distribution (see Section 4.5.2)

and sets up a table with frame priorities. Basically, it implements a recursive depth-

search, which is limited to a certain depth. At each depth, left and right traversals

are started, which sets ascending priority numbers to the alternating tree halves.

int main() {

int prioTable[patternSize], actpos=patternSize;

int maxdepth=(int)((log((double)patternSize)/log(2.0)) + 1);

for (int i=0; i<maxdepth; i++)

patSplit(prioTable,patternSize,i,&actpos);

}

void patSplit(int *pat, int len, int maxdepth, int *actpos) {

int i=1, j=1;

if (*actpos == len) { // init table

for (int k=0; k<len;k++)

pat[k]=-1;

patSplitRec(pat, len, 0, 0, 0, actpos);

}

APPENDIX A. IMPLEMENTATION DETAILS 153

while ((i!=0) || (j!=0)) {

i = patSplitRec(pat, len, 0, maxdepth, 1, actpos); // next node RIGHT

j = patSplitRec(pat, len, 0, maxdepth, 0, actpos); // next node LEFT

}

}

int patSplitRec(int *pat, int len, int actdepth,

int maxdepth, int gowhere, int *actpos) {

int half = len/2, *middle = &pat[half], ret;

if (actdepth < maxdepth) {

if (gowhere) {

ret = patSplitRec(pat, half, actdepth+1, maxdepth, gowhere, actpos);

if (ret == 0)

ret = patSplitRec(pat+half, len-half, actdepth+1,

maxdepth, gowhere, actpos);

return ret;

} else {

ret = patSplitRec(pat+half, len-half, actdepth+1,

maxdepth, gowhere, actpos);

if (ret == 0)

ret = patSplitRec(pat, half, actdepth+1, maxdepth, gowhere, actpos);

return ret;

}

} else {

if (*middle == -1) {

*middle = (*actpos)--;

return 1;

} else {

printf("FULL\n");

return 0;

}

}

}

APPENDIX A. IMPLEMENTATION DETAILS 154

A.2 Extensions for RTCP-based Feedback

The discussed extension for RTCP-based feedback was implemented according to the

Internet draft [7] and its performance gains were measured in Section 7.5. In the

following, detailed information is given how this implementation was done and how

it can be used by other applications, including the necessary code fragments. We

have extended the UCL Common Multimedia Library [113] of the University College

London to support RTCP Feedback. For simplicity issues, only Immediate Feedback

and Regular RTCP Mode are implemented. Possible feedback messages are restricted

to the Transport Layer, so there only might be ACK and/or NACK messages on RTP

packets but not on whole frames. This might increase the amount of feedback packets,

but will reduce the amount of retransmission packets, since only the needed frame

fragment will be resent. Note that data packets are more likely larger than feedback

packets.

A.2.1 Receiver Side

To enable and hereby automatically include and send feedback on the receiver side

with every RTCP packet, the UCL idea of settable RTP behaviour options is extended:

rtp_set_option(session, RTCP_OPT_FB_ACK, TRUE);

rtp_set_option(session, RTCP_OPT_FB_NACK, TRUE);

It is the application’s task to decide if ACK or even both ACK & NACK is needed

and really feasible with respect to network constraints.

When at least one feedback message type is enabled, the RTP library keeps track

of incoming packets and stores bitmasks of missing and arrived packets. Whenever

rtcp send ctrl(...) is called, all necessary feedback packets are generated and

added to one large RTCP compound packet with RTCP Sender and Receiver Reports

and SDES information.

To choose between immediate and regular RTCP feedback intervals, we have ex-

tended the rtcp send ctrl(...) function:

rtp_send_ctrl(session, rtp_ts, NULL, RTCP_NORMAL);

rtp_send_ctrl(session, rtp_ts, NULL, RTCP_IMMEDIATE);

APPENDIX A. IMPLEMENTATION DETAILS 155

If the option RTCP NORMAL is chosen, the call might even return without sending

anything, since the maximum RTCP bandwidth might be reached or the minimum

time interval is not yet over (here, the five seconds of minimum interval and five per-

cent of overall bandwidth apply). When set to RTCP IMMEDIATE, all gathered infor-

mation is sent out immediately, regardless of any restricting RTCP sending statistics

and rules.

Explicit NACKs With the above described behaviour, the UCL library only sends

NACKs (and ACKs) once, whenever rtcp send ctrl(...) is called. Since RTP is

normally used over UDP, also NACKs could be lost. To allow an application to

selectively re-request already NACKed packets, we introduced the following function:

rtp_send_explicit_nack(session, ssrc, rtp_seq, rtp_ts, NULL);

This immediately generates an RTCP receiver report and adds one NACK request

for the given RTP sequence number, but does not send it yet. So again, a call of

rtp_send_ctrl(session, rtp_ts, NULL, RTCP_IMMEDIATE);

is needed, to send the RTCP receiver report with the explicit NACK.

A.2.2 Sender Side

If the receiver sends extended feedback messages (ACK and/or NACK), the sender

has to somehow parse them to react accordingly.

Since the RTCP feedback is included in the compound RTCP packets, we only

have to extend our applications’ RtpCallback routine, which is called by the library,

whenever new packets arrive. The library already splits the compound packet and

calls the RtpCallback for every message part from the packet. We only had to

introduce a new message type: RX FB. Table A.1 shows an example implementation.

Note that ACK and NACK packets are two consecutive calls to our RtpCallback

routine! In eg. the ACK case, if one packet is not ACKed (if the bit is not set),

we cannot tell right there, if this really means that a packet was lost. We have to

compare it to the NACK bit of the according RTCP feedback packet.

APPENDIX A. IMPLEMENTATION DETAILS 156

The following example code (Table A.2) shows how to parse the feedback message

and is called from the above RtpCallback routine. Basically, in the NACK case,

the for loop runs through the bitmask. If there was a set bit (1), it writes out the

character D for Dropped. In the ACK case, we have to first check the Range bit.

Accordingly, we write out the following number of ACKed packets or the bit mask

again.

APPENDIX A. IMPLEMENTATION DETAILS 157

void Rtp::RtpCallback(struct rtp *session, rtp_event * e) {

rtcp_fb *fb;

switch (e->type) {

case RX_RTP: /* RTP data packet */

printf("RX_RTP SSRC = 0x%08x\n", e->ssrc);

/* do something */

break;

case RX_SR: /* sender report */

printf("RX_SR SSRC = 0x%08x\n", e->ssrc);

/* do something */

break;

case RX_RR: /* receiver report */

printf("RX_RR SSRC = 0x%08x\n", e->ssrc);

/* do something */

break;

case RX_FB: /* feedback report */

printf("RX_FB SSRC = 0x%08x\n", e->ssrc);

fb = (rtcp_fb*)e->data;

Rtp::fb_print(session,e->ssrc, fb);

free(e->data);

break;

default:

break;

}

}

Table A.1: Example of RtpCallback routine with RTCP feedback support

APPENDIX A. IMPLEMENTATION DETAILS 158

void Rtp::fb_print(struct rtp *session, uint32_t ssrc, rtcp_fb *fb) {

int i;

printf("RX_FB SSRC = 0x%08x ", ssrc);

switch (fb->subtype) {

case RTCP_FB_FMT_NACK:

printf("NACK BLP from %6i: ",fb->fci.fb_ack.pid);

for (i=0; i < 15; i++) {

if ((fb->fci.fb_nack.blp & ((uint64_t)1 << i)) != 0) {

printf("D"); /* Dropped */

} else {

printf("."); /* unknown (might be ACKed) */

}

}

break;

case RTCP_FB_FMT_ACK:

printf("ACK BLP from %6i: ",fb->fci.fb_ack.pid);

if (fb->fci.fb_ack.r == 1) { /* range */

printf(" to %6i",fb->fci.fb_ack.blp+fb->fci.fb_ack.pid);

} else /* bitmap */

for (i=0; i < 15; i++) {

if ((fb->fci.fb_ack.blp & ((uint64_t)1 << i)) != 0) {

printf("r"); /* received */

} else {

printf("."); /* unknown (might be NACKed) */

}

}

break;

default:

printf("FATAL: unknown Feedback Format!");

::exit(1);

}

printf("\n");

}

Table A.2: Example of RTCP feedback message parsing

APPENDIX

B ViTooKi Convenience Func-

tionality

The following section will describe some ViTooKi convenience functions which can be

used for better analysis of adaptation methods or received quality.

B.1 Statistics Dumps

When the MuViServer and MuViPlayer are used in the debug build, they create some

output files for each instantiated Statistics object. The statistics class distinguishes

between

• streamout seconds, where data comes in at any IO-Input before it is buffered or

processed, and

• playout seconds, where the data is played out (displayed) to the client, sorted

and ordered by their associated timestamps.

This allows a distinct analysis of streamed bandwidth or frame rate, and the finally

stored or displayed frames.

Streamout statistics are stored in the files rtp stat-streamout-server-N and

rtp stat-streamout-client-N resp., where N is an ascending number, reflecting

the actual counter of the instantiated Statistics class objects. Playout statistics are

stored in the files rtp stat-playout-client-N and rtp stat-playout-server-N ,

again with N as the ascending instance counter.

The following lists give an overview of how to interpret the file contents. All

bandwidth or buffer values are in Kilobytes.

APPENDIX B. VITOOKI CONVENIENCE FUNCTIONALITY 160

• Statistics::writeStreamoutSecServerStats

writes server-side streamout statistics as tab-seperated values to

rtp stat-streamout-server-N , and is called every second.

– the according streamout second,

– netBW (what we can stream out in this second)

– data bandwidth, which was sent out in one single attempt

– retransmitted data bandwidth

– NACKed bandwidth

– accumulated real Ssec bandwidth (dataBW+RtxBW-NackedBW), will

slightly differ with netBW because of coarse-grained packet sizes

– packet loss in percent

– estimated actual PlayoutSec, which is always behind the streamoutSec

– estimated amount of V secs in client buffer

– rate of adaptation in percent

– size of adaptation window in V sec seconds (normally 1.0)

– estimated client buffer fill level in Kilobyte

• Statistics::writeStreamoutSecClientStats

writes client-side streamout statistics to rtp stat-streamout-client-N .

– the according streamout second,

– data bandwidth, which was received at first attempt

– received retransmission bandwidth

– accumulated real Ssec bandwidth (dataBW+RtxBW)

– actual PlayoutSec, which is always behind the streamoutSec

– amount of V secs in client buffer

– estimated client buffer fill level in Kilobyte

– real client buffer fill level in Kilobyte

APPENDIX B. VITOOKI CONVENIENCE FUNCTIONALITY 161

Note, that client streamout statistics do not have any NACKed bandwidth sizes,

since the client only recognizes missing packets, but not their sizes.

• Statistics::writePlayoutSecStats

is used for both, server-side (rtp stat-playout-server-N) and client-side

playout statistics (rtp stat-playout-client-N) and writes the following val-

ues:

– the according playout second,

– the undecoded FPS

– the really decoded FPS, eg. after ESSync dropping

– data bandwidth, which arrived at first attempt

– retransmitted data bandwidth

– NACKed bandwidth

– accumulated real bandwidth (dataBW+RtxBW-NackedBW) of this V sec

– average PSNR of this second

Note again, that client playout statistics dont have any NACKed bandwidth

sizes, since the client only recognizes missing packets, but not their sizes.

B.2 Priority Files

As described earlier, the adjustment of the streamBW to available netBW has to be

done by adaptation. To drop B-frames by various prioritization algorithms, ViTooKi

allows the storage of priority files.

When an .mp4-file is opened with the MuViServer for demuxing and streaming, all

demultiplexed elementary streams are stored to the demux directory with the following

file names, where the trailing numbers are the elementary stream Ids:

bsboth.mp4

demux/bsboth.mp4.conf

demux/localfile_bsboth.mp4.video.1

APPENDIX B. VITOOKI CONVENIENCE FUNCTIONALITY 162

demux/localfile_bsboth.mp4.video.1.hint

demux/localfile_bsboth.mp4.audio.4

demux/localfile_bsboth.mp4.audio.4.hint

To generate the .hint-files, the ffMP4IO and isoMP4IO classes store time-

stamps, frame types, but also frame priorities with each issued method-call to

MP4IO::getFrame(). For predefined priorities, it is searched for a file in the same

directory as eg. bsboth.mp4, which has to be named similarily like the demuxed ele-

mentary stream: bsboth.mp4.video.1.prio. The file format is defined as follows:

Prio 0 Frame 0 Type I Bytes 3842

Prio 0 Frame 1 Type P Bytes 2129

Prio 13 Frame 2 Type B Bytes 907

Prio 21 Frame 3 Type B Bytes 1039

Prio 8 Frame 4 Type B Bytes 1003

Prio 22 Frame 5 Type B Bytes 912

Prio 0 Frame 6 Type P Bytes 1914

Prio 16 Frame 7 Type B Bytes 835

...

Note that reference frames (I- and P-frames) have a priority value of zero, which

denotes their high importance.

If no .prio-file is found, priority values are calculated on-the-fly in

MP4IO::getFrame() according to the proposed timely uniform distribution scheme,

where each I- and P-frame is assigned a zero-priority, whereas B-frames are priori-

tized by fast table lookups according to the proposed algorithm for timely uniform

distribution priority values.

B.3 PSNR Calculation

For various measurements and quality-wise comparisons of different adaptation algo-

rithms, it is important to compare the displayed video with the very original video,

which was used at creation (encoding) time.

APPENDIX B. VITOOKI CONVENIENCE FUNCTIONALITY 163

Whenever MuViPlayer is used for video playback of eg. bsboth.mp4, it looks

for a locally stored file called localfile bsboth.mp4.video.1.yuv, which is (or is

pointing to) the very original YUV video1.

If such a file is found, each really displayed and decoded frame is further com-

pared to the original frame and its PSNR value is calculated. This also works in the

special case, where frames were dropped or were undecodable/unavailable, because

the previously available frame is simply “replayed” to the PSNR comparison adaptor.

As mentioned above, the Statistics class is storing average PSNR values for playout

seconds and they are dumped to the output files. This PSNR calculation is imple-

mented as an UncompressedVideoAdaptor, where the original YUV-stream is passed

to the constructor as a YUVStreamIO object.

B.4 YUVDump Adaptor

Another UncompressedVideoAdaptor, which is integrated into the MuViPlayer,

is the YUVDump adaptor. Whenever a video is chosen for playback and PSNR

calculation is invoked, each by-passing YUV-frame is stored to a file called

localfile bsboth.mp4.video.1.dump.yuv.

Again, missing frames are compensated by “replaying” and doubly storing the

previous frame multiple times, so the dumped YUV-stream has the same length and

framerate as a decoded and unadapted stream would have.

1The very original is different from the already encoded and then decoded video without applied
adaptation! The already encoded and then decoded video will give infinite values, since this compares
the very same streams (at least for the non-dropped frames).

Bibliography

[1] Jim W. Roberts, “Traffic theory and the Internet”, IEEE Communications,

January 2001.

[2] Gregor Gaertner and Vinny Cahill, “Understanding link quality in 802.11 mo-

bile ad hoc networks”, IEEE Internet Computing, January 2004.

[3] Buck Krasic, Kang Li, and Jonathan Walpole, “The case for streaming multime-

dia with TCP”, Lecture Notes in Computer Science, LNCS 2158, pp. 213–218,

January 2001.

[4] E. Gurses, G. Bozdagi Akar, and N. Akar, “Selective frame discarding for video

streaming in TCP/IP networks”, Packet Video Workshop, Nantes, France,

April 2003.

[5] H. Schulzrinne and S. Casner, “RFC 1890: RTP profile for audio and video

conferences with minimal control”, January 1996.

[6] Jose Rey, David Leon, Akihiro Miyazaki, Viktor Varsa, and Rolf Hakenberg,

“RTP retransmission payload format”, draft-ietf-avt-rtp-retransmission-04.txt,

December 2002, expires May 2003.

[7] Joerg Ott, Stephan Wenger, Noriyuki Sato, Carsten Burmeister, and Jose Rey,

“Extended RTP profile for RTCP-based feedback (RTP/AVPF)”, draft-ietf-

avt-rtcp-feedback-04.txt, October 2002, expires April 2003.

[8] Rob Koenen, “Overview of the MPEG-4 standard”, ISO/IEC

JTC1/SC29/WG11 N4030, March 2001.

164

BIBLIOGRAPHY 165

[9] Mingzhe Li, Mark Claypool, and Robert Kinicki, “MediaPlayer versus Re-

alPlayer - A comparison of network turbulence”, Proceedings of the ACM SIG-

COMM Internet Measurement Workshop, Marseille, France, November 2002.

[10] Wu chi Feng and Jennifer Rexford, “A comparison of bandwidth smoothing

techniques for the transmission of prerecorded compressed video”, IEEE IN-

FOCOM, April 1997, pp. 58-66.

[11] Wu chi Feng, Ming Liu, and Chi Chung Lam, “A movie approximation

technique for the implementation of fast bandwidth smoothing algorithms”,

SPIE/IS&T Multimedia Computing and Networking, February 1998.

[12] James D. Salehi, Zhi-Li Zhang, James F. Kurose, and Don Towsley, “Supporting

stored video: Reducing rate variability and end-to-end resource requirements

through optimal smoothing”, ACM SIGMETRICS, May 1996.

[13] Simon S. Lam, Simon Chow, and David K. Y. Yau, “An algorithm for lossless

smoothing of MPEG video”, ACM SIGCOMM, August 1994.

[14] Marwan Krunz and Herman Hughes, “A traffic model for MPEG-Coded VBR

streams”, ACM SIGMETRICS, 1995.

[15] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “RFC 2205: -

Resource ReSerVation Protocol (RSVP)”, September 1997.

[16] Chia-Hui Wang, Jan-Ming Ho, Ray-I Chang, and Shun-Chin Hsu, “A control-

theoretic method of rate-based flow control of multimedia communication”,

Tech. Rep. TR-IIS-01-007, Institute of Information Science, Academia Sinica,

Taipei, Taiwan, 2001.

[17] Subhabrata Sen, Jennifer Rexford, Jayanta K. Dey, and James F. Kurose, “On-

line smoothing of variable-bit-rate streaming video”, IEEE Transactions on

Multimedia, vol. 2, no. 1, pp. 37–48, 2000.

[18] Zhi-Li Zhang, Srihari NElakuditi, Rahul Aggarwal, and Rose P. Tsang, “Effi-

cient selective frame discard algorithms for stored video delivery across resource

constrained networks”, Journal of Real-Time Imaging, 2000.

BIBLIOGRAPHY 166

[19] Wu chi Feng, Brijesh Krishnaswami, and Arvind Prabhudev, “Proactive buffer

management for the streamed delivery of stored video”, ACM Multimedia

Conference, September 1998.

[20] “Microsoft MPEG-4 Video Reference Software”,

http://megaera.ee.nctu.edu.tw/mpeg/Ref Software/.

[21] Klaus Leopold, “Quality controlled temporal video adaptation”, M.S. thesis,

University of Klagenfurt, January 2003.

[22] Anthony Vetro, Charilaos Christopoulos, and Huifang Sun, “Video transcoding

architectures and techniques: An overview”, IEEE Signal Processing Magazine,

pp. 18–29, March 2003.

[23] Bernhard Penz, “Video transcoding and its application in a video proxy”, M.S.

thesis, University of Klagenfurt, February 2003.

[24] Gregory Conklin, Gary Greenbaum, Karl Lillevold, Alan Lippman, and Yuriy

Reznik, “Video coding for streaming media delivery on the Internet”, IEEE

Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3,

March 2001.

[25] Fernando Pereira and Touradj Ebrahimi, The MPEG-4 Book, Prentice Hall,

2002.

[26] Gertjan Keesman, Robert Hellinghuizen, Fokke Hoeksema, and Geert Heide-

man, “Transcoding of MPEG bitstreams”, Signal Processing: Image Commu-

nication, pp. 481–500, September 1996.

[27] Huifang Sun, Wilson Kwok, and Joel Zdepski, “Architectures for MPEG com-

pressed bitstream scaling”, IEEE Trans. on Circuits and Systems for VideoTech-

nology, pp. 191–199, October 1995.

[28] Zhijun Leiand Nicolas D. Georganas, “Rate adaptation transcoding for pre-

coded video streams”, Proceedings of ACM Multimedia, pp. 127–136, December

2002.

BIBLIOGRAPHY 167

[29] Rob Koenen, “Profiles and levels in MPEG-4: Approach and overview”, Image

Communication Journal. Tutorial Issue on the MPEG-4 Standard, vol. 15, no.

1-2, January 2000.

[30] V.G. Ruiz, M.F. Lopez, I. Garcia, and E.M.T. Hendrix, “JPEG2000 vs. JPEG

in MPEG encoding”, Proceedings of the First International Workshop on In-

teractive Rich Media Content Production: Architectures, Technologies, Appli-

cations, Tools, Lausanne, Switzerland, pp. 61–67, October 2003.

[31] George Fankhauser, Marcel Dasen, Nathalie Weiler, Bernhard Plattner, and

Burkhard Stiller, “WaveVideo – an integrated approach to adaptive wireless

video”, ACM Monet, Special Issue on Adaptive Mobile Networking and Com-

puting, 1999.

[32] Weiping Li, “Overview of fine granularity scalability in MPEG-4 video stan-

dard”, IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 3,

March 2001.

[33] Matthias Ohlenroth and Hermann Hellwagner, “Quality adaptation options of

MPEG-4 video streams”, Tech. Rep. TR/ITEC/01/1.03, University of Klagen-

furt, December 2001.

[34] Philippe de Cuetos, Martin Reisslein, and Keith W. Ross, “Evaluating the

streaming of FGS-encoded video with rate-distortion traces”, Tech. Rep. RR-

03-078, Institut Eurecom, June 2003.

[35] Mihaela van der Schaar and Hayder Radha, “Adaptive motion-compensation

fine-granular-scalability (AMC-FGS) for wireless video”, IEEE Transactions on

Circuits and Systems for Video Technology, pp. 360–371, June 2002.

[36] Feng Wu, Shipeng Li, and Ya-Qin Zhang, “A framework for efficient progressive

fine granularity scalable video coding”, IEEE Transactions on Circuits and

Systems for Video Technology, pp. 332–344, March 2001.

BIBLIOGRAPHY 168

[37] “MoMuSys: Mobile multimedia systems”, ISO/IEC 14496 MPEG-4 Video Ref-

erence Software, ACTS-AC098, 1995-1999, Partners: Bosch, Siemens, Univer-

sity of Hamburg and Madrid, Deutsche Telekom, Heinrich Hertz Institut, and

more.

[38] Rakesh Dugad and Narendra Ahuja, “A scheme for spatial scalability using

nonscalable encoders”, IEEE Trans. Circuits and Systems for Video Technology,

vol. 12, pp. 620–627, July 1996.

[39] Qi Wang, Feng Wu, Shipeng Li, Yuzhuo Zhong, and Ya-Qin Zhang, “Fine-

granularity spatially scalable video coding”, IEEE International conference on

Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, pp. 1801–

1804, May 2001.

[40] Chuohao Yeo, “An investigation of methods for digital television format con-

versions”, M.S. thesis, Massachusetts Institute of Technology, May 2002.

[41] Touradj Ebrahimi and Murat Kunt, “Object-based video coding”, Handbook

of Image and Video Processing, pp. 585–596, 2000.

[42] Yasser Pourmohammadi-Fallah, Kambiz Asrar-Haghighi, and Hussein Al-

nuweiri, “Internet delivery of MPEG-4 object-based multimedia”, IEEE Mul-

timedia, vol. 10, pp. 68 –78, July 2003.

[43] Alexandre R.J. François and Gérard G. Medioni, “Adaptive color background

modeling for real-time segmentation of video streams”, Proceedings of the

International Conference on Imaging Science, Systems, and Technology, Las

Vegas, NA, pp. 227–232, June 1999.

[44] C. Schnorr and W. Peckard, “Motion-based identification of deformable tem-

plates”, International Conference on Computational Analysis of Images and

Patterns, Prague, September 1995.

[45] Anthony Vetro, Huifang Sun, and Yao Wang, “Object-based transcoding for

adaptable video content delivery”, IEEE Transactions on Circuits and Systems

for Video Technology, vol. 11, no. 3, March 2001.

BIBLIOGRAPHY 169

[46] Jose M. Martinez, “Overview of the MPEG-7 standard”, ISO/IEC

JTC1/SC29/WG11 N4031, March 2001.

[47] D. Irwin, Visual Memory Within and Across Fixations, chapter Eye movements

and Visual Cognition: Scene Preparation and Reading, pp. 146–165, New York:

Springer-Verlag, 1992.

[48] Javed I. Khan and Olewg Komogortsev, “Dynamic object window prediction

for perceptual coding of wide format video with eye-gaze tracking”, Tech. Rep.

TR2002-11-01, Kent State University, November 2002.

[49] Scott Daly, Kristine Matthews, and Jordi Ribas-Corbera, “Visual eccentricity

models in face-based video compression”, Proceedings of SPIE: Human Vision

and Electronic Imaging IV, vol. 3644, pp. 152–166, 1999.

[50] Mihaela van der Schaar and Hayder Radha, “A hybrid temporal-SNR fine-

granular scalability for Internet video”, IEEE Transactions on Circuits and

Systems for Video Technology, pp. 360–371, March 2001.

[51] Feng Wu, Shipeng Li, Rong Yan, Xiaoyan Sun, and Ya-Qin Zhang, “Efficient

and universal scalable video coding”, ICIP 2002, Rochester, pp. 37–40, Septem-

ber 2002.

[52] Chung-Neng Wang, Chia-Yang Tsai, Yao-Chung Lin, Han-Chung Lin, Hsiao-

Chiang Chuang, Jin-He Chen, Kin Lam Tong, Feng-Chen Chang, Chun-Jen

Tsai, Tihao Chiang, Shuh-Ying Lee, and Hsueh-Ming Hang, “FGS-based video

streaming test bed for media coding and testing in streaming environments”,

ISO/IEC JTC1/SC29/WG11 MPEG2002/M9182, December 2002.

[53] Sam Lerouge, Peter Lambert, and Rik Van de Walle, “Multi-criteria opti-

mization for scalable bitstreams”, Visual Content Processing and Representa-

tion, 8th International Workshop, VLBV 2003, Madrid, pp. 122–130, September

2003.

[54] Anthony Vetro, “MPEG-21 Requirements on Digital Item Adaptation”,

ISO/IEC JTC1/SC29/WG11 N4515, December 2001.

BIBLIOGRAPHY 170

[55] Sylvain Devillers, “Bitstream syntax definition language (BSDL): An input

to MPEG-21 content representation”, ISO/IEC JTC1/SC29/WG11 M7053,

March 2001.

[56] Michael Kropfberger and Peter Schojer, “ViTooKi – The Video ToolKit”,

http://ViTooKi.sourceforge.net.

[57] Peter Schojer, Laszlo Böszörmenyi, and Hermann Hellwagner, “An adaptive

MPEG-4 proxy cache”, Tech. Rep. TR/ITEC/02/2.07, University of Klagen-

furt, June 2002.

[58] Peter Schojer, Laszlo Böszörmenyi, Hermann Hellwagner, Bernhard Penz, and

Stefan Podlipnig, “Architecture of a Quality Based Intelligent Proxy (QBIX)

for MPEG-4 Videos”, ACM World Wide Web Conference, May 2003.

[59] Jürg Bolliger, A Framework for Network-Aware Applications, Ph.D. thesis,

ETH Zurich, 2000.

[60] Dietmar Jannach, Klaus Leopold, Hermann Hellwagner, and Christian Tim-

merer, “A knowledge based approach for multi-step media adaptation”, Pro-

ceedings of the 5th International Workshop on Image Analysis for Multimedia

Interactive Services (WIAMIS), April 2004.

[61] Kentarou Fukuda, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara,

“QoS mapping between user’s preference and bandwidth control for video trans-

port”, Proceedings of Fifth IFIP International Workshop on Quality of Service

(IWQoS), pp. 291–302, May 1997.

[62] G. Ghinea and J.P. Thomas, “QoS impact on user perception and understanding

of multimedia video clips”, Proceedings of ACM Multimedia, Bristol, United

Kingdom, pp. 49–54, 1998.

[63] Anna Bouch and M. Angela Sasse, “Network quality of service: What do users

need?”, Proceedings of the 4th International Distributed Conference (IDC’99),

pp. 78–90, 1999.

BIBLIOGRAPHY 171

[64] Peter Schojer, Laszlo Böszörmenyi, and Hermann Hellwagner, “QBIX-G - a

transcoding multimedia proxy”, Tech. Rep. TR/ITEC/04/2.16, University of

Klagenfurt, August 2004.

[65] “FFmpeg”, http://ffmpeg.sourceforge.net/.

[66] “XviD”, http://www.xvid.org/.

[67] Tamer Shanableh and Mohammed Ghanbari, “The importance of the bi-

directionally predicted pictures in video streaming”, IEEE Trans. Circuits and

Systems for Video Technology, vol. 11, no. 3, March 2001.

[68] Jenq-Neng Hwang, Tzong-Der Wu, and Chia-Wen Lin, “Dynamic frame-

skipping in video transcoding”, Proceedings of the IEEE Workshop on Multi-

media Signal Processing, pp. 616–621, December 1998.

[69] Jeongnam Youn, Ming-Ting Sun, and Chia-Wen Lin, “Motion vector refinement

for high-performance transcoding”, IEEE Transactions on Multimedia, vol. 1,

no. 1, pp. 30–40, 1999.

[70] Kun Tan, Richard Ribier, and Shih-Ping Liou, “Content-sensitive video stream-

ing over low bitrate and lossy wireless network”, ACM Multimedia, pp. 512–515,

2001.

[71] D. A. Robinson, “The mechanics of human smooth pursuit eye movement”,

The Journal of Physiology, vol. 180, 1965.

[72] Matthias Ohlenroth and Hermann Hellwagner, “A protocol for adaptation-

aware multimedia streaming”, Proceedings of ICME, Baltimore, July 2003.

[73] Matthias Ohlenroth, Network-based Adaptation of Multimedia Contents, Ph.D.

thesis, University of Klagenfurt, September 2003.

[74] Sandeep Bajaj, Lee Breslau, and Scott Shenker, “Uniform versus priority drop-

ping for layered video”, in SIGCOMM, September 1998, pp. 131–143.

BIBLIOGRAPHY 172

[75] Tianming Liu, H.J. Zhang, and Fei-Hu Qi, “Perceptual frame dropping in

adaptive video streaming”, Proceedings of IEEE International Symposium on

Circuits and Systems, Arizona, May 2002.

[76] Wai tian Tan, Video Compression and Streaming over Packet-switched Net-

works, Ph.D. thesis, University of California at Berkeley, 2000.

[77] Klaus Leopold, Hermann Hellwagner, and Michael Kropfberger, “QCTVA -

quality controlled temporal video adaptation”, Proceedings of SPIE Vol. 5242,

pp. 163–174, 2003.

[78] Michael Kropfberger and Hermann Hellwagner, “Evaluation of RTP immediate

feedback and retransmission extensions”, Proceedings of ICME 2004, June

2004.

[79] Jae Chung, Mark Claypool, and Yali Zhu, “Measurement of the congestion

responsiveness of RealPlayer streaming video over UDP”, Proceedings of the

Packet Video Workshop (PV), April 2003.

[80] Roger Karrer and Thomas Gross, “Dynamic handoff of multimedia streams”,

Proceedings of the 11th International Workshop on Network and Operating

Systems Support for Digital Audio and Video, pp. 125–133, 2001.

[81] Philippe Gentric, “Requirements and use cases for stream switching”, draft-

gentric-mmusic-stream-switching-req-00.txt, May 2003, expired November

2003.

[82] Linda Wu, Rosen Sharma, and Brian Smith, “Thin streams: An architecture

for multicasting layered video”, in NOSSDAV’97, May 1997.

[83] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia

Zhang, “A reliable multicast framework for light-weight sessions and appli-

cation level framing”, IEEE/ACM Transactions on Networking, vol. 5, no. 6,

pp. 784–803, 1997.

BIBLIOGRAPHY 173

[84] Reza Rejaie, Mark Hanley, and Deborah Estrin, “Layered quality adaptation

for Internet video streaming”, IEEE JSAC. Special Issue on Internet QoS,

Winter 2000.

[85] Reza Rejaie, An End-To-End Architecture for Quality Adaptive Streaming Ap-

plications in the Internet, Ph.D. thesis, University of Southern California, De-

cember 1999.

[86] Philippe de Cuetos, Despina Saparilla, and Keith W. Ross, “Adaptive streaming

of stored video in a TCP-friendly context: Multiple versions or multiple layers”,

International Packet Video Workshop, Kyongju, Korea, April 2001.

[87] Taehyun Kim and Mostafa H. Ammar, “A comparison of layering and stream

replication video multicast schemes”, Proceedings of the 11th International

Workshop on Network and Operating Systems Support for Digital Audio and

Video, pp. 63–72, 2001.

[88] Jian Lu, “Signal processing for Internet video streaming: A review”, Proceed-

ings of SPIE Image and Video Communications and Processing, 2000.

[89] Mihaela van der Schaar, “Using S-frames for fast switching between FGS

streams and switching between MC-FGS structures to limit prediction-drift”,

ISO/IEC JTC1/SC29/WG11 M8140, March 2002.

[90] Marta Karczewicz and Ragip Kurceren, “The SP- and SI-frames design for

H.264/AVC”, IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 13, pp. 637–644, July 2004.

[91] “Objective Perceptual Video Quality Measurement Using a JND-Based Full

Reference Technique”, Technical Report T1.TR.PP.75-2001, Alliance for

Telecommunications Industry Solutions ATIS, October 2001.

[92] Volker Zota, “Kompressionisten - Aktuelle Video-Codecs im Vergleich”,

Computer-Technik c’t Magazine, October 2003, p. 146.

[93] “OpenDivX”, http://www.projectmayo.com/.

BIBLIOGRAPHY 174

[94] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RFC 1889: RTP: a

transport protocol for real-time applications”, January 1996.

[95] D. McGrew and D. Oran, “The secure real time protocol”, IETF Internet-Draft,

draft-mcgrew-avt-srtp-00.txt, November 2000.

[96] Y. Kikuchi, T. Nomra, and S. Fukungaga, “RFC 3016: RTP payload format

for MPEG-4 audio/visual streams”, November 2000.

[97] J. van der Meer, D. Curet, E. Gouleau, S. Relier, C. Roux, P. Clement, and

G. Cherry, “RTP payload format for MPEG-4 flexmultiplexed streams”, Inter-

net draft, draft-curet-avt-rtp-mpeg4-flexmux-02.txt, November 2002.

[98] Matthias Ohlenroth and Hermann Hellwagner, “RTP-packetization of MPEG-4

elementary streams”, Tech. Rep. TR/ITEC/02/1.01, University of Klagenfurt,

March 2002.

[99] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar, “RFC 2250: RTP payload

format for MPEG1/MPEG2 video”, January 1998.

[100] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.C. Bolot,

A. Vega-Garcia, and S. Fosse-Parisis, “RFC 2198: RTP payload for redundant

audio data”, IETF, September 1997.

[101] L. Berc, W. Fenner, R. Frederick, S. McCanne, and P. Stewart, “RFC 2435:

RTP payload format for JPEG-compressed video”, October 1998.

[102] Jan van der Meer, David Mackie, and Viswanathan Swaminathan, “Internet

streaming media alliance implementation specification”, August 2001, Version

1.0.

[103] M. Handley and V. Jacobson, “RFC 2327: Session description protocol (SDP)”,

IETF, April 1998.

[104] H. Schulzrinne, A. Rao, and R. Lanphier, “RFC 2326: Real time streaming

protocol (RTSP)”, IETF, April 1998.

BIBLIOGRAPHY 175

[105] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “RFC 2616: Hypertext Transfer Protocol – HTTP/1.1”, June

1999.

[106] Philippe Gentric, “RTSP stream switching”, draft-gentric-mmusic-stream-

switching-01.txt, January 2004, expires July 2004.

[107] J. Bormans, J. Gelissen, and A. Perkis, “MPEG-21: The 21st century multime-

dia framework”, IEEE Signal Processing Magazine, vol. 20, pp. 53 – 62, March

2003.

[108] Ian Burnett et.al, “MPEG-21: Goals and achievements”, IEEE Multimedia,

vol. 10, pp. 60–70, October 2003.

[109] Ingo Wolf, Bernhard Feiten, Teodora Guenkova-Luy, Andreas Schorr, Franz

Hauck, and Andreas J. Kassler, “MPEG-21 DIA based delivery using SDPng

and RTP”, ISO/IECT JTC1/SC29/WG11 M10996, July 2004.

[110] Christian Leicher, “Hierarchical encoding of MPEG sequences using priority

encoding transmission (PET)”, Tech. Rep. TR-94-058, International Computer

Science Institute, Berkeley, CA, November 1994.

[111] Andres Albanese and Giancarlo Fortino, “Robust transmission of MPEG video

streams over lossy packet-switching networks by using PET”, Tech. Rep. TR-

99-014, International Computer Science Institute, Berkeley, CA, June 1999.

[112] Mike Piecuch, Ken French, George Oprica, and Mark Claypool, “A selective

retransmission protocol for multimedia on the Internet”, Proceedings of SPIE

International Symposium on Multimedia Systems and Applications, Boston,

November 2000.

[113] University College London, “UCL common multimedia library”, http://www-

mice.cs.ucl.ac.uk/multimedia/software/common/.

[114] “MPEG4IP”, http://mpeg4ip.sourceforge.net/.

[115] “Helix Community”, https://helixcommunity.org/.

BIBLIOGRAPHY 176

[116] “VideoLAN”, http://www.videolan.org/.

[117] Haifeng Xu, Joe Diamand, and Ajay Luthra, “Client architecture for MPEG-4

streaming”, IEEE Multimedia, vol. 11, pp. 16–23, April-June 2004.

[118] Peter Schojer, QBIX-G - A Quality Based Intelligent Proxy Gateway, Ph.D.

thesis, University of Klagenfurt, 2004.

[119] Sally Floyd and Kevin Fall, “Promoting the use of end-to-end congestion control

in the Internet”, IEEE/ACM Transactions on Networking, August 1999.

[120] Shanwei Cen, Calton Pu, and Jonathan Walpole, “Flow and congestion control

for Internet streaming applications”, Tech. Rep. CS-97-03, Oregon Graduate

Institute of Science and Technology, 1998.

[121] Reza Rejaie, Mark Handley, and Deborah Estrin, “RAP: An end to end rate-

based congestion control mechanism for realtime streams in the Internet”, Pro-

ceedings of IEEE Infocom, New York, March 1999.

[122] YoungGook Kim, JongWon Kim, , and C.-C. Jay Kuo, “Smooth and fast rate

adaptation mechanism (SFRAM) for TCP-friendly Internet video”, Proceedings

of the International Packet Video Workshop, Sardinia, Italy, May 2000.

[123] Dorgham Sisalem and Henning Schulzrinne, “The loss-delay based adjustment

algorithm: A TCP-friendly adaptation scheme”, in Proceedings of NOSSDAV,

Cambridge, UK., 1998.

[124] Dorgham Sisalem and Adam Wolisz, “LDA+: A TCP-friendly adaptation

scheme for multimedia communication”, in IEEE International Conference on

Multimedia and Expo (III), 2000, pp. 1619–1622.

[125] Michael Welzl, Scalable Performance Signalling and Congestion Avoidance,

Ph.D. thesis, Technische Universität Darmstadt, 2002.

[126] Jörg Widmer, Robert Denda, and Martin Mauve, “A survey on TCP-friendly

congestion control”, IEEE Network, vol. 15, no. 3, pp. 28–37, 2001.

BIBLIOGRAPHY 177

[127] Ingo Buchbauer, “Flusskontrolle und QoS-Feedback für Multimedia-Streaming-

Protokolle”, M.S. thesis, University of Klagenfurt, May 2003.

[128] I. Busse, B. Deffner, and H. Schulzrinne, “Dynamic QoS control of multimedia

applications based on RTP”, First International Workshop on High Speed

Networks and Open Distributed Platforms, St. Petersburg, Russia, June 1995.

[129] Yeali S. Sun, Fu-Ming Tsou, and Meng Cheng Chen, “Predictive flow con-

trol for TCP-friendly end-to-end real-time video on the Internet”, Computer

Communications, pp. 1230–1242, August 2002.

[130] Sally Floyd and Van Jacobson, “Random early detection gateways for conges-

tion avoidance”, IEEE Transactions on Networking, vol. 1, no. 4, pp. 397–413,

August 1993.

