Real time Protocols

Michael Kropfberger, 9555885 mailto:michael.kropfberger@gmx.net

Seminar of Mathematics and Theoretical Computer Science

Prof. Dr. Patrick Horster

(620.710 WS 00/01)

Sensitization

- demand for multi-media services
 - live reports
 - video on demand (VoD)
 - voice over IP (VoIP)
 - audio/video/whiteboard conferences
- ullet HTTP and FTP o not prepared (no QoS, no streaming)

Existing IETF Protocols

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
 - Audio and Video Conferences
 - Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

Real-Time Protocol

- runs on ST-II, UDP/IP, IPX or ATM AAL5
- UDP/IP widely used
 - unreliable
 - multicasting
- RTP inherits UDP "features" → RTCP

Mixers vs. Translators

Mixers

- change the stream, eg. from high to low quality
- generates new source identifier (SSRC)
- keeps track of originating, contributing sources (CSRC)

Translators

- eg. firewalls: translate from multicast to unicast
- translate from UDP/IP to ATM AAL5
- forward RTP packets, keep SSRC intact

RTP/UDP/IP Header

Vers	sion	Hdr Lı	ngth	To	S	Leng	th(bytes)	
Identification Flag FrgmOffs								
Time to Live Protocol				Header chksun		<u>e</u> n		
Source IP Address						leac		
Destination IP Address						Pv4-Header		
Options (if any)						IPv		
Source Port Dest Port)P.			
Datagram Length Checksum					5			
Vers	Vers Pad eXt CC Mark Pay SequenceNr							
Timestamp								
Synchronization Source Identifier								
(first) Contributing Source Identifier								
(other) Contributing Source Identifier					RTP			
(last) Contributing Source Identifier								
Profile–Specific Information								

RTP/UDP/IP Header: Details

- Payload Type (7 bits)
 - according to the profile
 - eg. GSM, MPEG-1 layer 3, JPEG, MPEG-2 video, H.261...
- Sequence Number (16 bits)
 - detect packet loss
 - restore packet sequence
 - randomly initialized (if not for server, then for possibly encrypting translators)

RTP/UDP/IP Header: Details 2

- Timestamp (32 bits)
 - monotonically and linearly clock
 - might be differently ordered like MPEG-2 I,B and P frames
 - clock frequency >> sample rate
- Synchronization Source Identifier (SSRC) (32 bit)
- Contributing Source Identifiers (CSRC) (32 bit)

RTP/UDP/IP Header Compression

- 40 byte per RTP/UDP/IP header
- 20 ms packetization interval \rightarrow 16 kbit/s only for headers
- serial line compression down to 2 bytes (4 bytes with checksum)
- how?
 - only 50% of the fields change
 - other changes in a predictible way
 - generate 8 bit CIDs, store first packet and first-order difference
 - fall-back to full packets on other changes

Real-Time Control Protocol

- four tasks
 - send information about QoS (lost packets, jitter...)
 - transfer clear-text information (eg. CNAME)
 - calculate RTCP packetization rates
 - keep track of all joined participants
- packet types
 - sender
 - receiver
 - SDES
 - BYE

V		Repor	t Cnt	Ptype:200	Length	
SSRC of Sender						
NTP Timestamp						
RT	P T	imestan	np			
Sender's Packet Count						
Sender's Byte Count						
SSRC of first source						
(% Lo	Lost Cummulative Packets Lost				
Extended Highest Sequence Number Received						
Interarrival Jitter						
Time of last Sender Report						
Time since Last Sender Report						
List of Sender Reports						
SSRC of last source						
% Lost		Cummulative Packets Los				
Extended Highest Sequence Number Received						
Interarrival Jitter						
Time of last Sender Report						
Time since Last Sender Report						
Profile-specific Information						

V R Cnt Ptype:201 Length SSRC of Sender					
SSRC of first source					
% Lost Cummulative Packets Los					
Extended Highest Sequence Number Received					
Interarrival Jitter					
Time of last Sender Report					
Time since Last Sender Report					
List of Sender Reports					
SSRC of last source					
% Lost Cummulative Packets Lost					
Extended Highest Sequence Number Received					
Interarrival Jitter					
Time of last Sender Report					
Time since Last Sender Report					
Profile-specific Information					

_ y		R Cnt	Ptype:202	Length				
SSI	SSRC/CSRC of first source							
SDES items								
further SDES items								
List of other SSRC/SDES chunks								
SSRC/CSRC of last source								
SDES items								
further SDES items								

Where are we?

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
 - Audio and Video Conferences
 - Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

RTP Profile: Audio and Video Conferences

- 20 ms packetization rate (or the formats natural frame size)
- sampling frequency out of 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000
- channel ordering from left-to-right
- audio encodings
 - eg. G.722, G.723, G.726, G.728, G.729, GSM, MPA, RED
- video encodings
 - Motion JPEG, H.261, H.263, MPV

Where are we?

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
 - Audio and Video Conferences
 - Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

RTP Profile: Secure RTP

- provides privacy, message authentication, and replay protection
- additive AES compliant stream cypher in counter mode
- MAC over the whole packet
- contains data according to another profile
- normal RTP header format, adds a 4-byte authentication tag

Secure RTP Header

Cryptographic Context

- encryption key k_e (fixed for session)
- message authentication key k_m (fixed for session)
- 32-bit rollover counter r (which counts how many times the 16-bit RTP sequence number wrapped around $0 \times FFFF$)
- ullet the last authenticated sequence number s_l
- \bullet replay list L (only receiver side), keeps track of already processed packets

Cryptographic Background

- AES compliant symmetric key block-cypher
 - Advanced Encryption Standard
 - 128 bit block size
 - three key sizes of 128, 192, 256 bits
 - since October 2000: Winner is "Rijndael"

Cryptographic Background: Rijndael

- data block is partitioned into an array of bytes
- each cypher operation is byte oriented
- multiple rounds (10, 12 or 14; depends on key size)
- one round consists of four layers
 - first layer: 8x8 S-Box applied to each byte
 - second and third: shifting of array rows, mixing columns
 - fourth layer: subkey bytes XORed with each byte of array

Cryptographic Background: Counter Mode

- resistancy to redundant plaintext attacks
- cypher block chaining (CBC) mode
 - encrypt last block with key and XOR with new block
 - dependancy on all packets
- segmented integer counter mode (SIC)
 - encrypt counter with key and XOR with new block
 - small hamming distance for ctr and $ctr+1 \sim$ only problematic for differentially weak ciphers

Cryptographic Background: SIC

Cryptographic Background: SIC in SRTP

- ctr = [(r * 65536) + seq] * 4096 + i
- ullet seq is the RTP sequence number, i is a counter for each 128 bit block
- IP packet size = 64 KB → 4096 blocks
- Jumboframes are unlikely to be used for multimedia traffic
- ullet ctr has to be unique over the session life time
- maximum of $2^{48} = 281,474,976,710,656$ SRTP packets
- 20 ms packetization time \rightsquigarrow 178,510 years

Cryptographic Background: UMAC

- Message Authentication Code (MAC) → UMAC
- fast (eg. one clock cycle for one byte)
- ullet extra security by key and a "nonce" (our counter ctr)
- $UMAC = E_{AES}(k_m, ctr) \oplus UHASH(k_m, B_i)$
- UMAC-OUTPUT-LEN = 4 bytes

Cryptographic Background: UHASH

- three layers
 - bulk hash function $NH \rightarrow$ speed optimized, compresses block
 - polynomial hash \sim 16 byte
 - inner-product hash \sim 2 byte
- repeat layers with slightly different keys to get additional 2 bytes
- repetition is independent → trade authenticity with speed
- allows quick processing to survive DoS attacks

Replay Detection

- bit field over the last SRTP_WINDOW_SIZE
- ullet $SRTPseq-SRTP_WINDOW_SIZE$ and SRTPseq
- SRTPseq = r * 65,536 + seq
- log all older packets and replayed packets (paranoia?)

Replay Detection: SRTP WINDOW SIZE

- how big should SRTP_WINDOW_SIZE be?
 - receiver buffer size \rightarrow "real" real time
 - unidirectional com (eg. radio) \rightarrow 3 sec
 - video conferences \rightarrow not more than 400 ms
 - 20 ms packetization rate \sim 50 packets/sec
 - 500 ms buffer \rightarrow max. 25 packets (opt. 32 packets)

Secure RTCP

- based on same ideas as for SRTP
- 32 bit authentication tag
- 32 bit SRTCP index
 - $-2^{32} = 4,294,967,296$ packets for one session
 - has to be terminated with RTCP BYE packet

Secure RTCP Header

Where are we?

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
 - Audio and Video Conferences
 - Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

Real-Time Resource ReSerVation Protocol (RSVP)

- IP: best effort
- RSVP adds rate-sensitive and delay-sensitive QoS
- soft state over routers
- tunneling for non-RSVP networks

Real-Time Streaming Protocol (RTSP)

- may use RTP
- "VCR-style" remote conrol functionality
- similar syntax to HTTP/1.1
- ullet typical session: DESCRIBE o SETUP o PLAY o PAUSE o TEARDOWN

Conclusion

- what did we discuss?
 - Real-Time Protocol (RTP)
 - Real-Time Control Protocol (RTCP)
 - RTP Profiles
 - * Audio and Video Conferences
 - * Secure RTP
 - Resource ReSerVation Protocol (RSVP)
 - Real-Time Streaming Protocol (RTSP)
- ∃ base for real-time streaming of multi-media data, not widely used
 - ⊕ RealNetworks uses RTP, but favors RDP
 - ⊕ RSVP is supported by modern routers (eg. Cisco)