Real time Protocols

> Michael Kropfberger, 9555885 mailto:michael.kropfberger@gmx.net

Seminar of Mathematics and Theoretical Computer Science

Prof. Dr. Patrick Horster

(620.710 WS 00/01)

Sensitization

- demand for multi-media services
- live reports
- video on demand (VoD)
- voice over IP (VoIP)
- audio/video/whiteboard conferences
- HTTP and FTP \rightarrow not prepared (no QoS, no streaming)

Existing IETF Protocols

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
- Audio and Video Conferences
- Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

Real-Time Protocol

- runs on ST-II, UDP/IP, IPX or ATM AAL5
- UDP/IP widely used
- unreliable
- multicasting
- RTP inherits UDP "features" \leadsto RTCP

Mixers vs. Translators

- Mixers
- change the stream, eg. from high to low quality
- generates new source identifier (SSRC)
- keeps track of originating, contributing sources (CSRC)
- Translators
- eg. firewalls: translate from multicast to unicast
- translate from UDP/IP to ATM AAL5
- forward RTP packets, keep SSRC intact

RTP/UDP/IP Header

RTP/UDP/IP Header: Details

- Payload Type (7 bits)
- according to the profile
- eg. GSM, MPEG-1 layer 3, JPEG, MPEG-2 video, H.261...
- Sequence Number (16 bits)
- detect packet loss
- restore packet sequence
- randomly initialized (if not for server, then for possibly encrypting translators)

RTP/UDP/IP Header: Details 2

- Timestamp (32 bits)
- monotonically and linearly clock
- might be differently ordered like MPEG-2 I,B and P frames
- clock frequency >> sample rate
- Synchronization Source Identifier (SSRC) (32 bit)
- Contributing Source Identifiers (CSRC) (32 bit)

RTP/UDP/IP Header Compression

- 40 byte per RTP/UDP/IP header
- 20 ms packetization interval $\leadsto 16 \mathrm{kbit} / \mathrm{s}$ only for headers
- serial line compression down to 2 bytes (4 bytes with checksum)
- how?
- only 50% of the fields change
- other changes in a predictible way
- generate 8 bit CIDs, store first packet and first-order difference
- fall-back to full packets on other changes

Real-Time Control Protocol

- four tasks
- send information about QoS (lost packets, jitter...)
- transfer clear-text information (eg. CNAME)
- calculate RTCP packetization rates
- keep track of all joined participants
- packet types
- sender
- receiver
- SDES
- BYE

V	Report Cnt	Ptype:200	Length
SSRC of Sender			
NTP Timestamp			
RTP Timestamp			
Sender's Packet Count			
Sender's Byte Count			
SSRC of first source			
\% Lost C		Cummulative Packets Lost	
Extended Highest Sequence Number Received			
Interarrival Jitter			
Time of last Sender Report			
Time since Last Sender Report			
..List of Sender Reports			
SSRC of last source			
\% Lost		mmulative P	ackets Lost
Extended Highest Sequence Number Received			
Interarrival Jitter			
Time of last Sender Report			
Time since Last Sender Report			
Profile-specific Information			

V	R Cnt	Ptype:201	Length
SSRC of Sender			
SSRC of first source			
\% Lost		Cummulative Packets Lost	
Extended Highest Sequence Number Received			
\ddagger Interarrival Jitter			
\ddagger Time of last Sender Report			
\# Time since Last Sender Report			
..List of Sender Reports			
: SSRC of last source			
\% Lost		Cummulative P	ackets Lost
Extended Highest Sequence Number Received			
Interarrival Jitter			
Time of last Sender Report			
\pm Time since Last Sender Report			
Profile-specific Information			

V	R Cnt	Ptype:202	Length
SSRC/CSRC of first source			
SDES items			
further SDES items			
... List of other SSRC/SDES chunks			
SSRC/CSRC of last source			
SDES items			
further SDES items			

Where are we?

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
- Audio and Video Conferences
- Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

RTP Profile: Audio and Video Conferences

- 20 ms packetization rate (or the formats natural frame size)
- sampling frequency out of $8000,11025,16000,22050,24000,32000$, 44100, 48000
- channel ordering from left-to-right
- audio encodings
- eg. G.722, G.723, G.726, G.728, G.729, GSM, MPA, RED
- video encodings
- Motion JPEG, H.261, H.263, MPV

Where are we?

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
- Audio and Video Conferences
- Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

RTP Profile: Secure RTP

- provides privacy, message authentication, and replay protection
- additive AES compliant stream cypher in counter mode
- MAC over the whole packet
- contains data according to another profile
- normal RTP header format, adds a 4-byte authentication tag

Secure RTP Header

Cryptographic Context

- encryption key k_{e} (fixed for session)
- message authentication key k_{m} (fixed for session)
- 32-bit rollover counter r (which counts how many times the 16-bit RTP sequence number wrapped around $0 \times F F F F$)
- the last authenticated sequence number s_{l}
- replay list L (only receiver side), keeps track of already processed packets

Cryptographic Background

- AES compliant symmectric key block-cypher
- Advanced Encryption Standard
- 128 bit block size
- three key sizes of 128, 192, 256 bits
- since October 2000: Winner is "Rijndael"

Cryptographic Background: Rijndael

- data block is partitioned into an array of bytes
- each cypher operation is byte oriented
- multiple rounds (10, 12 or 14 ; depends on key size)
- one round consists of four layers
- first layer: 8x8 S-Box applied to each byte
- second and third: shifting of array rows, mixing columns
- fourth layer: subkey bytes XORed with each byte of array

Cryptographic Background: Counter Mode

- resistancy to redundant plaintext attacks
- cypher block chaining (CBC) mode
- encrypt last block with key and XOR with new block
- dependancy on all packets
- segmented integer counter mode (SIC)
- encrypt counter with key and XOR with new block
- small hamming distance for ctr and ctr $+1 \leadsto$ only problematic for differentially weak ciphers

Cryptographic Background: SIC

Cryptographic Background: SIC in SRTP

- $\operatorname{ctr}=[(r * 65536)+s e q] * 4096+i$
- seq is the RTP sequence number, i is a counter for each 128 bit block
- IP packet size $=64 \mathrm{~KB} \leadsto 4096$ blocks
- Jumboframes are unlikely to be used for multimedia traffic
- $c t r$ has to be unique over the session life time
- maximum of $2^{48}=281,474,976,710,656$ SRTP packets
- 20 ms packetization time $\leadsto 178,510$ years

Cryptographic Background: UMAC

- Message Authentication Code (MAC) \rightarrow UMAC
- fast (eg. one clock cycle for one byte)
- extra security by key and a "nonce" (our counter ctr)
- $U M A C=E_{A E S}\left(k_{m}, c t r\right) \oplus U H A S H\left(k_{m}, B_{i}\right)$
- UMAC-OUTPUT-LEN $=4$ bytes

Cryptographic Background: UHASH

- three layers
- bulk hash function NH \leadsto speed optimized, compresses block
- polynomial hash $\leadsto 16$ byte
- inner-product hash $\leadsto 2$ byte
- repeat layers with slightly different keys to get additional 2 bytes
- repetition is independent \leadsto trade authenticity with speed
- allows quick processing to survive DoS attacks

Replay Detection

- bit field over the last SRTP_WINDOW_SIZE
- SRTPseq - SRTP_WINDOW_SIZE and SRTPseq
- SRTPseq $=r * 65,536+$ seq
- \log all older packets and replayed packets (paranoia?)

Replay Detection: SRTP WINDOW SIZE

- how big should SRTP_WINDOW_SIZE be?
- receiver buffer size \rightarrow "real" real time
- unidirectional com (eg. radio) $\rightarrow 3 \mathrm{sec}$
- video conferences \rightarrow not more than 400 ms
-20 ms packetization rate $\leadsto 50$ packets $/ \mathrm{sec}$
- 500 ms buffer \leadsto max. 25 packets (opt. 32 packets)

Secure RTCP

- based on same ideas as for SRTP
- 32 bit authentication tag
- 32 bit SRTCP index
$-2^{32}=4,294,967,296$ packets for one session
- has to be terminated with RTCP BYE packet

Secure RTCP Header

Where are we?

- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
- Audio and Video Conferences
- Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)

Real-Time Resource ReSerVation Protocol (RSVP)

- IP: best effort
- RSVP adds rate-sensitive and delay-sensitive QoS
- soft state over routers
- tunneling for non-RSVP networks

Real-Time Streaming Protocol (RTSP)

- may use RTP
- "VCR-style" remote conrol functionality
- similar syntax to HTTP/1.1
- typical session: DESCRIBE \rightarrow SETUP \rightarrow PLAY \rightarrow PAUSE \rightarrow TEARDOWN

Conclusion

- what did we discuss?
- Real-Time Protocol (RTP)
- Real-Time Control Protocol (RTCP)
- RTP Profiles
* Audio and Video Conferences
* Secure RTP
- Resource ReSerVation Protocol (RSVP)
- Real-Time Streaming Protocol (RTSP)
- \exists base for real-time streaming of multi-media data, not widely used
\oplus RealNetworks uses RTP, but favors RDP
\oplus RSVP is supported by modern routers (eg. Cisco)

